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Abstract
Wepresent a novel genetic algorithm-based approach for the compact representation of heterogeneous, optically thick, translu-
cent materials. Utilizing genetic optimization, we also find the best transformation to represent measured subsurface scattering
data. We employ a factored subsurface scattering representation, based on a singular value decomposition (SVD), separately
applying the SVD per-color channel of the transformed profiles. In order to achieve a compact, accurate representation, we
perform this iteratively on the model errors. By allowing the number of iterations to be customized, our representation pro-
vides a mechanism to trade the visual quality possible against the level of compression achieved through our representation.
We validate our approach by analyzing a range of real-world translucent materials, geometries and lighting conditions. For
heterogeneous translucent materials, we further demonstrate that for the same level of compression, our method achieves
greater visual accuracy than alternative techniques. Finally, we present an application of our factored representation, which
can be used to convert heterogeneous materials into homogeneous material representations.

Keywords Subsurface scattering model · Genetic algorithm · Factorization · BSSRDF representation · Global illumination ·
Rendering

1 Introduction

Translucent materials such as wax, marble and human skin
allow light to partially penetrate the surface and scatter light
in a more complex fashion than opaque materials. Light scat-
tering occurs at various layers within the material, allowing
some of this internal material to be seen. In computer graph-
ics, this behavior is encoded using the general bidirectional
surface scattering distribution function (BSSRDF), a gener-
alization of the bidirectional reflectance distribution function
(BRDF) introduced by Nicodemus et al. [34].

Due to the complexity of translucent materials, represent-
ing these is commonly simplified by assuming that the optical
properties of the material are constant (homogeneous). In
this case, light scattering can be approximated by a diffu-
sion equation and a term for single scattering [9]. Therefore,
many successful homogeneous subsurface scattering models
use this approximation [6,10,17,18,21]. In practice, this is
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a serious limitation, as many translucent objects typically
encountered are heterogeneous, i.e., their optical proper-
ties vary spatially [1,33,42]. Although there are a number
of data-driven representations [36,41,42] for measured het-
erogeneous subsurface scattering data, efficient compression
algorithms remain a challenge for representing them both
compactly and accurately.

Factorization techniques have been used for some mate-
rial appearancemodels [2,27], bidirectional texture functions
(BTFs) [46,47], subsurface scattering (SSS) effects of homo-
geneous [21] and heterogeneous translucent materials [25,
36,42]. While our novel subsurface scattering representation
is also based on a factorization technique, we demonstrate,
through a detailed analysis, that employing an SVD-based
representationwith genetic optimization [31] allows a notice-
able boost to the visual accuracy of heterogeneous real-
world materials for similar compression levels to alternative
approaches.

We use a genetic algorithm (GA) [31] to optimize our
transformation, evolving to the fittest solution giving the
most accurate fit to measured subsurface scattering data. The
applied transformation acts like afiltering technique, smooth-
ing out high frequencies in the subsurface scattering profiles,
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which in turn demonstrably improves accuracy of the factor-
ization.

The novel contributions of this paper are:

– A compact representation of heterogeneous optically
thick translucent materials.

– A novel pre-processing technique for optimizing the
transformations of profiles of measured subsurface scat-
tering responses.

– A tunablemethod to trade visual complexity against com-
pression level.

– A detailed validation of our method.

Our algorithm works by first evolving the best transfor-
mation on the profiles of measured subsurface scattering
responses. After this, we separately factorize each color
channel of these transformed profiles using a rank-1 approx-
imation of the SVD-based factorization [35]. To achieve a
compact and accurate representation, we iteratively apply the
rank-1 approximation of the SVD to the model errors. The
compactness of the rank-1 approximation also allows our
GA to handle a large population in parallel. The number of
iterations used is tunable. Our method achieves a subsurface
scattering representation that is both optimal and the visual
quality trade-off against compression level controllable (see
Fig. 1).

A physically plausible BSSRDF representation should
have nonnegativity, Helmholtz reciprocity and energy con-
servation properties [34]. A limitation of our method is that
our visually plausible subsurface scattering model satisfies
the nonnegativity property, theHelmholtz reciprocity, but not
necessarily energy conservation.

2 Related work

Our method builds upon factorization-based representations,
GAs and BSSRDF representations; therefore, we discuss
each of these below.
Factorization-based representations These have been fre-
quently used for representing BRDFs [2,23,27,29,43], spa-
tially varying BRDFs [26], BTFs [38,39,46,47], homoge-
neous subsurface scattering [21] and heterogeneous sub-
surface scattering [25,36,42]. We refer the reader to the
tutorial by Pajarola et al.’s [35] for a survey of these tech-
niques. Specifically, tensor approximation (TA) [24,35] is an
established factorization method that has been used in vol-
ume simulations [44,47],BTFs [38,39,46,47],BRDFs [2,43],
importance sampling of BRDFs [2] and heterogeneous sub-
surface scattering [25].

Nonnegative matrix factorization (NMF) is also used for
representation and importance sampling of BRDFs [27]
and representation of heterogeneous subsurface scattering
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Fig. 1 Framework of our subsurface scattering representation with
genetic optimization

[36,42]. Inspired by theseworks, we instead employ an SVD-
based factorization in combination with genetic optimization
to represent measured subsurface scattering profiles. We
argue that this representation gives higher visual quality for
equivalent compression levels to other approaches.
Genetic algorithms GAs have been used extensively in
optimization problems, but are less frequently applied to
problems in computer graphics. The most related excep-
tion is in inverse rendering to estimate the parameters of
Jensen et al.’s [18] homogeneous BSSRDF model [28,32].
This type of application makes genetic optimization very
time-consuming, as the fitness function is computed between
reference and rendered images for each candidate chro-
mosome. Genetic programming (GP) together with genetic
algorithms has also been used to investigate new analytic
BRDF models from measured BRDF data [4]. Recently,
Guarnera et al. [14] used genetic algorithms to remap the
parameters of source and target analytical BRDF models. In
Guarnera et al.’s [14] work, the fitness function is computed
between rendered images of source and target BRDF mod-
els. In contrast to prior work, we apply genetic optimization
in the accurate and compact representation of measured sub-
surface scattering data. Our GA is used to find the fittest
transformation to profiles of measured subsurface scattering
profiles. When compared to inverse-rendering-based tech-
niques [14,28,32], our GA is computationally efficient, as
our fitness function is computed between measured and fac-
tored data for each candidate chromosome.
BSSRDF representations A seminal paper by Jensen et
al. [18] introduced the diffusion dipole approximation for
homogeneous subsurface scattering in computer graphics.
Subsequently, several approaches [6–8,10,16,19–21,30,48,
49] have extended and optimized this for translucent materi-
als and/or for real-time rendering of translucent objects.

For example, Donner and Jensen [8] extended the dif-
fusion dipole approximation to the diffusion multipole
approximation by including additional light sources into the
BSSRDF computation. Mertens et al. [30] implemented the
diffusion dipole approximation in screen-space to render

123



GenSSS: a genetic algorithm for measured subsurface scattering representation 309

homogeneous translucent materials in real time. d’Eon et
al. [7] extended the diffusion multipole approximation [8]
by approximating it with a sum of Gaussians, and used these
to blur the irradiance signal in texture space. Since Gaus-
sians allow transformation of the expensive 2D convolutions
into a cheaper set of 1D convolutions, this technique can
be used in real-time rendering simulations. Xu et al. [48]
extended pre-computed radiance transfer (PRT) techniques
to Jensen et al.’s BSSRDF model for real-time rendering
homogeneous translucent materials under fixed environ-
ment lighting and real-time editing material parameters.
Jensen et al.’s BSSRDF representation was extended by
Jimenez et al. [19] to represent human skin in real time.
Jimenez et al.’s BSSRDF representation is based on blur-
ring the diffuse BSSRDF of the translucent object, as a
post-processing step, by employing a sum-of-Gaussians for-
mulation. Since Jensen et al.’s BSSRDF model can only be
used to represent isotropic homogeneous translucent mate-
rials, Jakob et al. [16] extended it to a new anisotropic
dipole approximation model for representing anisotropic
homogeneous media. d’Eon and Irving’s [6] quantized dif-
fusion approximation model is another extension of Jensen
et al.’s diffusion dipole approximation model and mainly
based on convolving irradiance with a sum-of-Gaussians
BSSRDF approximation. This representation also uses a
quantization of the Green’s function of the diffusion equa-
tion to obtain more realistic all-frequency results. Yan et
al. [49] extended the quantized diffusion approximation
model [6] for accurate rendering of homogeneous translu-
cent materials under spherical Gaussian (SG) lights. Unlike
previous representations [6,18], the proposed technique can
produce elliptical reflectance profiles, as it considers oblique
lighting angles. Frisvad et al. [10] extended the diffusion
dipole approximation by taking the direction of incom-
ing light into account. Frisvad et al.’s analytical directional
dipole model is especially suited for highly forward scat-
tering materials, where the directionality of the incident
illumination is more important. Jimenez et al. [21] used a
rank-1 approximation of homogeneous subsurface scatter-
ing profiles by using the SVD technique in screen-space.
Their subsurface scattering representation assumes that the
irradiance is additively separable in order to render homo-
geneous translucent materials at real time. However, none
of these representations have been designed to represent
heterogeneous translucent materials accurately and com-
pactly.

Fuchs et al. [11] used a linear combination of exponen-
tial fall-off functions to represent heterogeneous translucent
materials, which were measured with a DISCO laser-based
acquisition system [12]. For quasi-homogeneous translu-
cent materials, i.e., those with uniformly distributed het-
erogeneous structures, Tong et al. [45] proposed a quasi-
homogeneous representation. Peers et al. [36] employed a

combination of k-means clustering and NMF-based algo-
rithms to represent measured heterogeneous subsurface scat-
tering data. First, Peers et al. represented the homogeneous
part of a heterogeneous translucent material using k-means
clustering. Next, they factorized the heterogeneous part after
division by a homogeneous approximation of the heteroge-
neous translucent material using an NMF-based algorithm.
Song et al.’s [41] SubEdit representation allows interactive
editing and rendering of heterogeneous translucent mate-
rials, trading-off efficiency in compactness and accuracy.
The SubEdit representation uses the logarithm of measured
BSSRDF data and decomposes the logarithmically trans-
formed BSSRDF into a set of 1D scattering profiles defined
at each point. This decoupling enables editing operations
while maintaining the heterogeneity present in the measured
data [41]. Chen et al. [5] implemented Song et al.’s SubE-
dit representation in screen-space for real-time rendering of
deformable, heterogeneous translucent objects. Kurt et al.
[25] used the Tucker factorization technique [2] with a linear
regression to represent measured heterogeneous subsurface
scattering data. In Kurt et al.’s work, the Tucker factoriza-
tion was used to represent intensity of measured subsurface
scattering responses. Then, to capture color values, linear
regression was separately applied to each color channel. Kurt
et al.’s [25] representation gives rise to results similar to Peers
et al.’s [36] with respect to model accuracy and results sim-
ilar to ours in terms of compression. More recently, Sone et
al. [40] and Nakamoto and Koike [33] proposed a parameter
estimation method, using existing homogeneous BSSRDF
models [6,10,18] for rendering heterogeneous translucent
materials. This method estimates optical properties of homo-
geneous volumes by taking the average of coefficients of
analytical BSSRDF models around the incident and exi-
tant points. These average coefficients allow representation
of heterogeneous translucent materials efficiently by using
homogeneous BSSRDF models.

In contrast to the above methods, our approach uses a
genetic optimization to discover the fittest transformation to
the measured subsurface scattering responses. Unlike prior
work, our GA combined with the SVD-based technique pro-
vides a new approach for representing measured subsurface
scattering data of translucent materials.

3 Overview

The general behavior of translucent materials described by
the BSSRDF [34] S(xi ,

−→ω i ; xo,−→ω o) relates an outgoing
radiance Lo(xo,

−→ω o) at a location xo in an outgoing direction−→ω o, to an incoming radiance Li (xi ,
−→ω i ) at a location xi in

an incoming direction −→ω i as follows:
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Lo(xo,
−→ω o)

=
∫
A

∫
�+ Li (xi ,

−→ω i )S(xi ,
−→ω i ; xo, −→ω o)(

−→ω i · −→n )d−→ω idxi ,

(1)

A is the area around the location xo,�+ is the hemisphere
around the location xi , and

−→n is the surface normal at the
location xi . Equation (1) can be seen as an extended version
of the rendering equation [18,22], and it can be separated
into two components: a local component Ll(xo,

−→ω o) and a
global component Lg(xo,

−→ω o). While the local component
represents light immediately reflected from a surface, the
global component accounts for the light scattering within the
material volume. As in Goesele et al. [12], Peers et al. [36]
andSong et al. [41],we represent the global component by the
diffuse BSSRDF Sd(xi ,

−→ω i ; xo,−→ω o) which can be further
decomposed approximately [8,18]:

Sd(xi ,
−→ω i ; xo,−→ω o) = 1

π
Fi (xi ,

−→ω i )Rd(xi , xo)

Fo(xo,
−→ω o), (2)

Rd(xi , xo) is a four-dimensional (4D) spatial subsurface
scattering component, Fo(xo,

−→ω o) and Fi (xi ,
−→ω i ) are direc-

tionally dependent components. In contrast to previousworks
[12,25,36,41], we apply genetic optimization together with
SVD for accurate, compact and efficient representation of
the 4D spatial component Rd(xi , xo) of translucent materi-
als. Similarly, we ignore the local component Ll(xo,

−→ω o)

and the directional dependent components Fo(xo,
−→ω o) and

Fi (xi ,
−→ω i ) by assuming light incoming from the surface nor-

mal.

4 Our subsurface scattering representation

In this section,we describe the key steps in our framework for
deriving our measured subsurface scattering representation
(see Fig. 1), together with our genetic algorithm. Through the
use of our GA, we discover transformations that give rise to
the fittest representation. Finally, we analyze factorization-
based representations, and the impact of the most important
parameters of our factored subsurface scattering representa-
tion.

4.1 Our genetic algorithm

Genetic algorithms are machine learning approaches used to
solve both constrained and unconstrained optimization prob-
lems. They are loosely based on natural selection [31]. We
apply aGA in twoways, first to discover new transformations
for real-world subsurface scattering and second to represent

measured subsurface scattering data using an SVD-based
technique.

For our transformation search problem, we evolve a pop-
ulation to find the fittest solution. Each candidate solution is
referred to as a chromosome consisting of estimated transfor-
mation parameters (called genes). The set of chromosomes
that make up the population is initialized randomly for the
first generation. Through selection, crossover and mutation
operations, the population is evolved over successive gener-
ations with the help of a fitness function. To discover new
transformations for real-world subsurface scattering, we can
use a simple nonlinear optimization, which would generate a
single point at each iteration. The sequence of points would
approach an optimal solution with the algorithm determin-
istically selecting the next point in the sequence. However,
in nonlinear space, global search problems are challenging
and it is harder to robustly find global minima. Nonlinear
optimization pursues a single solution to the search prob-
lem. GAs, on the other hand, try several potential solutions
(i.e., population) to global search problems. Therefore, GAs
converge to a more accurate result. For this reason, we opt
instead to also use genetic optimization for this part of our
technique.

Our fitness (i.e., loss function) of a chromosome is defined
as the root-mean-square error (RMSE) between measured
and factored subsurface scattering data. The population size
(P) is equal to 10 × N , where N is the number of genes in
the chromosome. In other words, N is equal to the number of
variables in the applied transformation. In the evolutionary
process, some of the chromosomes are considered as elite,
which gives lower fitness values in the population. The frac-
tion of elite chromosomes is equal to �0.05 × P�, which
specifies the number of chromosomes guaranteed to survive
through to the next generation.

A selection function specifies the choice of parents for
the next generation. This function can be thought of as a
stochastic uniform, which arranges a line in which each
parent corresponds to a section of the line of length pro-
portional to its scaled value. These values are determined
by scaling the raw scores (i.e., RMSE) based on the rank
of each chromosome. The rank (r ) of a chromosome is its
position (proportional to 1/

√
r ) in the sorted raw scores.

Using the square root in the rank fitness scalingmakes poorly
ranked chromosomes more nearly equal in score giving them
a chance to survive. The algorithm traverses along the line in
steps of equal size. At each step, a parent is allocated from
the section it lands on. The first step is selected by a uniform
random number less than the step size (see Goldberg [13] for
details).

A crossover function can be called as the scattered func-
tion since it produces a random binary vector [13]. The genes
from the first parent are selected when the vector is 1, and the
genes from the second parent are selected when the vector is
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Fig. 2 a, b First, we reformat the BSSRDF matrix (a) by aligning the
diagonal by a change of variables to R′

d (xi , d), similar to [36]. b, c
Second, we automatically apply various transformation operations (see
Table 1) to obtain the subsurface scattering matrix R′′

d (xi , d) by using
our genetic algorithm. To reconstruct R′

d (xi , d) from R′′
d (xi , d), we only

need to store the fittest parameters (i.e., the fittest chromosome) of the
applied transformations.

0. These are combined to specify the genes for the child. Our
crossover fraction is equal to 0.8×P ,which specifies the frac-
tion of the next generation, other than elite children, that are
produced by the crossover operation. The mutation function
randomly generates directions that are adaptive with respect
to the last successful or unsuccessful generation. This func-
tion chooses a direction and step length that satisfies bounds
and linear constraints [13]. Our mutation fraction is approx-
imately equal to 0.2 × P , which specifies the fraction of the
next generation, other than elite children, that are produced
by the operation.

To achieve meaningful and visually plausible results, we
apply boundary constraints to genes in the applied transfor-
mation (see Sect. 4.4 for the applied boundary constraints).
Our genetic optimization is terminated when the average
relative change in the best fitness function value, over gen-
erations, is less than or equal to a small threshold value (i.e.,
10−6). In our GA, we always use the same values and frac-
tions and users do not need to tune many parameters.

4.2 Transformation

Measured BSSRDF data can be represented as a matrix
Rd(xi , xo) where xi and xo are incoming and outgoing sur-
face locations. In our transformation framework, similar to
Peers et al. [36], we first linearize themeasured 4D input data
to a two-dimensional (2D) form, i.e., matrix. Figure 2a shows
an example of a subsurface scattering matrix Rd(xi , xo) of a
heterogeneous material containing a light blocking element,
for example a vein. The effects of this are expressed by hor-
izontal and vertical discontinuities in Rd(xi , xo). Second,
we reorganize the subsurface scattering matrix Rd(xi , xo)
by changing the variables d = xo − xi (see Fig. 2a, b).
The reparameterized subsurface scattering matrix R′

d(xi , d)

is a more compact form of the measured BSSRDF data

(since max(d) = kernelsi ze, max(d) � max(xo), and
R′
d(xi , d) ≈ 0 when xo − xi > max(d)), and it can be

factorized instead of Rd(xi , xo).
To arrive at the fittest transformation for the measured

subsurface scattering data, we apply various transformations
using our GA (described in Sect. 4.1, see Figs. 1, 2b, c), to
measured data sets from Peers et al. [36] and Song et al. [41]
by using the following steps:

1. We automatically generate transformations from initial
seed transformations.

2. We automatically generate a range of chromosomes for
every applied transformation.

3. By using our genetic optimization framework, we apply
the transformations with a rank-1 approximation of SVD
to subsurface scattering data to find the fittest transfor-
mation.

Table 1 shows these applied transformations and their
properties.We seed the searchwith some handpicked (empir-
ically derived) initial transformations (see transformation ID:
1&4&11 in Table 1); we then automatically optimize these
by trying variations of the initial transformations that are
close by in the search space. Since subsurface scattering
profiles are large data sets, we handle a significant amount
of data (i.e., GBs of data). These large data sets increase
the computation time of our GA, and naïvely representing a
material may take about 1 − 2 days. In order to make this
more tractable, we perform this as a pre-processing step and
we automatically try a range of chromosomes for the same
transformation reducing computation times to∼ 2−3×. This
allows us to optimize chromosomes for the applied transfor-
mation. Our GA finds lower fitness values if transformations
are applied to each color channel separately (see transfor-
mation ID: 1&2 in Table 1). This is because the measured
subsurface scattering data are the diffuse reflectance compo-
nent which differs in all color channels. In transformations
ID:10 through 15, R′

d(xi , d) is divided by its maximum value
(i.e., max(R′

d(xi , d))). Converting the subsurface scattering
profiles in this way ensures that the values of subsurface
surface scattering profiles remain within [0, 1]. This greatly
improves the efficiency of our GA for finding the fittest
transformation with the least generations (see transforma-
tion ID:9&13 in Table 1). This is an important observation,
as the number of generations plays a key role in finding the
fittest transformation, and increases the optimization time of
GAs linearly [28,32].

Measured subsurface scattering profiles have their peaks
when d = xo−xi = 0 (i.e., the light and the viewer are at the
same position), and other parts of the subsurface scattering
profiles are primarily diffuse as can be seen in Fig. 3. Start-
ing from d = 0, we allow our GA to find the fittest range of
the applied transformation. Discovering this range helps to

123



312 M. Kurt

Ta
bl
e
1

Pr
op
er
tie
s
of

th
e
ge
ne
tic

op
tim

iz
at
io
n
fo
r
he
te
ro
ge
ne
ou
s
ar
tifi

ci
al
st
on
e

T
ra
ns
fo
rm

at
io
n
ID

T
ra
ns
fo
rm

at
io
n
ex
pr
es
si
on

C
hr
om

os
om

e
Po

pu
la
tio

n
si
ze

N
um

be
r
of

ge
ne
ra
tio

ns
Fi
tte
st
va
lu
e
(R
M
SE

)

1
R

′′ d
(x

i,
d
)
=

ln
( 1

+
R

′ d
(x

i,
d
)

α
s

)
α
s(
R
,
G

,
B

)
30

26
9

0.
09
69
4

2
R

′′ d
(x

i,
d
)
=

ln
( α

d
+

R
′ d
(x

i,
d
)

α
s

)
α
d
(i
nt
en

si
ty

),
α
s(
in
te
ns
it
y)

20
28
2

0.
09
69
9

3
R

′′ d
(x

i,
d
)
=

ln
1p

( R
′ d
(x

i,
d
)

α
s

)
α
s(
R
,
G

,
B

)
30

27
8

0.
09
69
5

4
R

′′ d
(x

i,
d
)
=

( R
′ d
(x

i,
d
)) n

n(
R
,
G

,
B

)
30

91
0.
10
09
1

5
R

′′ d
(x

i,
d
)
=

( α
s
R

′ d
(x

i,
d
)) n

α
s(
in
te
ns
it
y)

,
n(
in
te
ns
it
y)

20
72

0.
10
09
1

6
R

′′ d
(x

i,
d
)
=

( 1
+

R
′ d
(x

i,
d
)) n

n(
R
,
G

,
B

)
30

70
0.
14
89
5

7
R

′′ d
(x

i,
d
)
=

lo
g 2

( 1
+

R
′ d
(x

i,
d
)

α
s

)
α
s(
R
,
G

,
B

)
30

26
3

0.
09
69
5

8
R

′′ d
(x

i,
d
)
=

lo
g b

( 1
+

R
′ d
(x

i,
d
))

b(
R
,
G

,
B

)
30

51
0.
55
85
5

9
R

′′ d
(x

i,
d
)
=

lo
g b

( 1
+

R
′ d
(x

i,
d
)

α
s

)
b(
R
,
G

,
B

),
α
s(
in
te
ns
it
y)

40
19
1

0.
09
69
9

10
R

′′ d
(x

i,
d
)
=

1 α
ln

( 1
+

ex
p

(α
R

′ d
(x

i,
d
)/

m
ax

(
R

′ d
(x

i,
d
))

)−
1

ex
p

(α
)−

1

)
α
(
R
,
G

,
B

)
30

14
3

0.
09
72
5

11
R

′′ d
(x

i,
d
)
=

ln
( 1

+
ex
p

(α
R

′ d
(x

i,
d
)/

m
ax

(
R

′ d
(x

i,
d
))

)−
1

ex
p

(α
)−

1

)
α
(
R
,
G

,
B

)
30

51
0.
09
72
2

12
R

′′ d
(x

i,
d
)
=

ex
p

( ln
( 1

+
R

′ d
(x

i,
d
)

m
ax

(
R

′ d
(x

i,
d
))

) α)
−

1
α
(
R
,
G

,
B

)
30

71
0.
09
97
1

13
R

′′ d
(x

i,
d
)
=

lo
g b

( 1
+

R
′ d
(x

i,
d
)

α
s
m
ax

(
R

′ d
(x

i,
d
))

)
b(
R
,
G

,
B

),
α
s(
R
,
G

,
B

)
60

69
0.
09
69
4

14
R

′′ d
(x

i,
d
)
=

{ R
′ d
(x

i,
d
)/

m
ax

(
R

′ d
(x

i,
d
))

if
ra
ng
e

=
0

ln
( 1

+
R

′ d
(x

i,
d
)

α
s
m
ax

(
R

′ d
(x

i,
d
))

)
ot
he
rw

is
e

α
s(
R
,
G

,
B

),
d

±
ra

ng
e(
R
,
G

,
B

)
60

79
0.
09
34
0

15
R

′′ d
(x

i,
d
)
=

{ R
′ d
(x

i,
d
)/

m
ax

(
R

′ d
(x

i,
d
))

if
ra
ng
e

=
0

( R
′ d
(x

i,
d
)/

m
ax

(
R

′ d
(x

i,
d
))

) n
ot
he
rw

is
e

n(
R
,
G

,
B

),
d

±
ra

ng
e(
R
,
G

,
B

)
60

11
7

0.
09
28
5

T
he

ta
bl
e
al
so

su
m
m
ar
iz
es

so
m
e
st
at
is
tic

s
of

tr
an
sf
or
m
at
io
ns

ap
pl
ie
d
by

ou
r
ge
ne
tic

al
go

ri
th
m

w
ith

K
=

1.
W
he
n
w
e
do

no
ta
pp
ly

an
y
tr
an
sf
or
m
at
io
ns
,t
he

ra
nk
-1

ap
pr
ox
im

at
io
n
of

ar
tifi

ci
al
st
on
e

gi
ve
s
a
R
M
SE

of
0.
10
09
1

123



GenSSS: a genetic algorithm for measured subsurface scattering representation 313

d = xo - xi (pixels)
-612 -459 -306 -153 0 153 306 459 612

ln
(1

 +
 R

' d(x
i, d

))

0

1

2

3

4

Red

d = xo - xi (pixels)
-612 -459 -306 -153 0 153 306 459 612

ln
(1

 +
 R

' d(x
i, d

))

0

1

2

3

4

Green

d = xo - xi (pixels)
-612 -459 -306 -153 0 153 306 459 612

ln
(1

 +
 R

' d(x
i, d

))

0

1

2

3

4

Blue

Fig. 3 From left to right: red, green and blue channels ofmeasured scat-
tering profiles (R′

d (xi , d)) for artificial stone, when xi = 0. Measured
scattering profiles have their peaks when d = xo − xi = 0, which is
useful information for finding the fittest transformation with our genetic

algorithm. Note that for better visualization, measured scattering pro-
files were applied a logarithmic-based scaling. Note also that d, xo and
xi are all scalar values
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Fig. 4 A comparison of the SVD-based subsurface scattering model
with and without applying various transformations (see Table 1) using
our genetic optimization. The model parameter K was selected as 1.
The error values were sorted in the logarithmic RMSEs of the SVD
technique (purple) for visualization purposes

find the most optimal transformations, these were found to
be transformations ID: 14&15 shown in Table 1. Discover-
ing this range also helps to optimize the computation time of
our subsurface scattering representation, as we do not need
to apply the transformation to each surface point. We applied
both transformation ID: 14 and 15 to all measured subsur-
face scattering data with a rank-1 approximation of SVD
shown in Fig. 4. On average, transformation ID: 14 and 15
decrease the RMSE by 3.835%, and 2.875%, respectively.
Therefore, we select and use transformation ID: 14 in the
rest of paper. We get more erroneous representations with
lower rank approximations of SVD. Our GA together with
the applied transformation allows us to achieve visually plau-
sible results even with lower rank approximations of SVD.

4.3 Factorization

Wecompare representing themeasured subsurface scattering
data with the following techniques:

xi

d = xo-xi

U f1 (xi )

h1 ( d )

Rd(xi ,d)

S

v1(d)s1*k

V

k

k

k

k = 1

k = 1

Fig. 5 The rank-k approximation of themeasured subsurface scattering
matrix R′′

d (xi , d) is composed of matrixU , matrix S and matrix V . We
use the rank-1 approximation of the measured subsurface scattering
matrix R′′

d (xi , d)

xi

d = xo-xi

f1(xi )

h1(d)

fK(xi )

hK ( d )

Rd(xi ,d)

K times

Fig. 6 We use an error modeling approach [2] using SVD-based fac-
torization for representing the measured subsurface scattering matrix
R′′
d (xi , d)

– TD (Tucker-based factorization [25]).
– NMF-based technique, similar to Peers et al. [36].
– SVD [35].

The SVD technique gives the best low-rank approxima-
tion with respect to the Frobenius norm on 2D data [21,35],
and it is also the most computationally efficient approach on
2D data. The SVD computes the k largest singular values
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Fig. 7 A comparison of our SVD-based subsurface scattering repre-
sentation and a Tucker-based subsurface scattering representation [25]
at nearly equal storage levels

Jade
Blue wax

Yellow wax

Chessboard (4 x 4)

Chessboard (8 x 8)

Marble (close up)

Densely veined marble
Artificial stone

R
M

S
E

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08
SVD (K = 5) + Transformation ID:14
NMF (T = 5)

Fig. 8 A comparison of our SVD-based subsurface scattering repre-
sentation and a NMF-based subsurface scattering representation [36] at
equal storage levels

and associated singular vectors of matrix R′′
d (xi , d); thus,

the SVD produces xi × k-dimensional matrix U , k × k-
dimensional matrix S and k × d-dimensional matrix V ,
which yields R′′

d (xi , d) ≈ USV . In our modeling proce-
dure, we use the SVD to compute the rank-1 approximation
of the R′′

d (xi , d) by setting k = 1, which yields two vec-
tors ( f1(xi ) and v1(d)) and a scalar value (s1) in the form
of R′′

d (xi , d) ≈ f1(xi )s1v1(d). To increase compactness and
to reduce rendering time of our representation, we multiply
v1(d) with s1 to get h1(d), thus R′′

d (xi , d) ≈ f1(xi )h1(d).
This modeling process is depicted in Fig. 5.

Our GA combined with the rank-1 approximation of the
subsurface scattering matrix using an SVD approach pro-
vides a very compact, visually plausible and computationally
efficient representation. However, due to the approximate
nature, it is unsuitable for accurately representing the visual
complexity of scattering behavior from highly heteroge-
neous and anisotropic structures of translucentmaterials [21].
Therefore, to minimize approximation errors, we use an
error modeling approach with the rank-1 approximation
of R′′

d (xi , d) using the SVD technique for flexible repre-
sentation. This type of error modeling approach was first Ta
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Fig. 9 a The root-mean-square error (RMSE) values (lower is better)
of our SVD-based model for various values of K ; b the peak signal-to-
noise patio (PSNR) values (higher is better) of our SVD-basedmodel on
the dragon scene (see Fig. 11) for various values of K ; c the compres-

sion ratio (CR) of our model for various values of K ; d the rendering
times of our model on the dragon scene (see Fig. 11) for various values
of K

introduced by Bilgili et al. [2]. Similar to their work, we
simplify the approximation procedure and reduce the error
of approximation in a stepwise fashion. The process for
this is firstly, we decompose the R′′

d (xi , d) matrix with
the SVD-based factorization yielding the vectors ( f1(xi )
and h1(d)). Next, we decompose the model errors (e1 =
R′′
d (xi , d) − f1(xi ) h1(d)) again with the rank-1 approxi-

mation of the SVD-based factorization, giving the vectors
( f2(xi ) and h2(d)). Then, we factorize the model errors
(e2 = R′′

d (xi , d) − f1(xi )h1(d) − f2(xi )h2(d)) again with
the rank-1 approximation of the SVD-based factorization,
giving the vectors ( f3(xi ) and h3(d)). Finally, this process is
repeated for a predetermined number of times. As shown in
Fig. 6, the final subsurface scattering model will be the sum
of the estimation of model errors and the first factorization
of R′′

d (xi , d), which can be formalized as:

R′′
d (xi , d) ≈

K∑
j=1

f j (xi )h j (d), (3)

K is the total number of terms and f j (xi ) and h j (d) are
the univariate functions, which help to provide a very com-
pact subsurface scattering representation. In our subsurface
scattering representation, K provides some controllability
of the modeling errors of our representation. Since f j (xi )
and h j (d) functions are represented as piecewise linear func-
tions, we apply a bilinear interpolation on d when computing
R′′
d (xi , d). This bilinear interpolation is required for the visu-

alization step, to match our texture-space representation to
3D objects described in geometry space. Note that when
K = n, this is the total number of observations (i.e., the
number of total measurements) required for the model to
provide a perfect representation.

Instead of using K times a rank-1 approximation of
SVD with the error modeling approach, we could simply
use a rank-k approximation of SVD to represent measured
subsurface scattering profiles. Both representations would
give the same RMSE, theoretically. However, the rank-1

approximation of SVD is more compatible with our GA,
and since we use a parallel version of our genetic algo-
rithm, the population size is handled in parallel requiring
3 × (xi × k + k × k + k × d) × P memory. Choosing to
use the rank-1 approximation allows our GA to increase the
population size, which helps to find the fittest representation
more accurately.

We compare our SVD-based subsurface scattering repre-
sentation (GenSSS) with other factorization-based subsur-
face scattering representations. To make a fair comparison,
we compare these representations at equivalent storage lev-
els. In our comparisons, we use measured data from Peers
et al. [36] and Song et al. [41]. In Fig. 7, we compare
our SVD-based subsurface scattering representation with the
Tucker-based subsurface scattering representation [25]. The
latter uses Tucker factorization on the intensity channel. To
compute color values, it applies polynomial approximation
to each color channel, separately. In Fig. 8, we compare
our SVD-based subsurface scattering representation with the
NMF-based subsurface scattering representation, similar to
[36]. The NMF-based representation applies nonnegativity
constraints on the factorization of subsurface scattering pro-
files, and it applies the NMF technique to each color channel
separately. As shown in Figs. 7 and 8, our SVD-based subsur-
face scattering representation (GenSSS) gives more visually
accurate results than alternative factorization-based subsur-
face scattering representations.

4.4 Parameter analysis

Our subsurface scattering representation (GenSSS) has four
parameters: max(R′

d(xi , d)), αs , range and K . The param-
eter max(R′

d(xi , d)) is computed from measured subsurface
scattering profiles. αs and range are other components of
transformation ID:14. They are both scalar values and deter-
mined through our GA. Our algorithm searches for the fittest
chromosome, consisting of αs and range. To get meaningful
and visually plausible results, we apply some constraints to
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Fig. 10 For parameter analysis of our subsurface scattering model on
Lucy, Buddha, kitten and dragon objects under spot lighting, (first col-
umn) heterogeneous artificial stone, chessboard (8 × 8), marble (close
up) and yellow wax materials were rendered with a Monte Carlo path
tracing algorithm (reference images); (other columns) the same het-
erogeneous translucent materials were rendered using our factored

subsurface scattering model for various values of K . Below each image
we also report the RMSE value (lower is better) and PSNRvalue (higher
is better). Insets show false-color difference images computed between
the reference images and the rendered images. Note that for better
comparison, false-color differences were scaled by a factor of ten. All
images were rendered at 16 samples/pixel

αs and range, such that 0 < αs ≤ ∞, 0 ≤ range ≤ max(d).
K is the number of terms in the SVD-based factorization used
in our model.

The value of K can be configured for the usage context of
our subsurface scattering model. This provides some flexi-
bility in our subsurface scattering representation, and control
over the visual quality of our subsurface scattering represen-
tation. As can be seen in Table 2, Figs. 9 and 10, when K is
chosen to be 5, our model represents the general shape of the

heterogeneous subsurface scattering profile accurately while
providing good rendering times and compression rates. The
rendering time of our representation increases linearly as the
number of terms in the SVD-based factorization increases,
which can be seen in Fig. 9d. Minimizing K in our model
plays a key role when lower rendering times are desirable.
Another important parameter that has a key role on rendering
times is the range, as we apply the transformation ID:14 to
the range of subsurface scattering profiles. Our GA helps us
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Fig. 11 A visual comparison between the SubEdit model [41] and our
model at comparable data sizes on dragon, Buddha and statue objects
under spot lighting. Note that for better comparison, false-color differ-
ences were scaled by a factor of ten. All images were rendered at 16
samples/pixel

to find the optimum range of applied transformations, which
also optimize the rendering times of our GenSSS model. As
Fig. 10 shows,we achieve visually plausible results evenwith
K = 1 for most of the translucent materials represented.

5 Results

We implemented a rendering scheme similar to Peers et al.
[36] using the Mitsuba rendering system [15] to visualize
our results and make visual comparisons with existing sub-
surface scattering representations. All subsurface scattering
representations are implemented in texture space, and we use
classical path tracing with 4 bounces of interreflections. Our
rendering algorithm includes a pre-processing part that com-
putes the irradiance on a large set of sample positions spread
uniformly over the object surface. These blue noise sample
points are well distributed, and their locations are chosen
using a technique proposed by Bowers et al. [3]. The blue
noise samples are convolved with the diffusion subsurface
scattering profiles using a fast hierarchical technique [17].
To validate our subsurface scattering model and compare it

with existing subsurface scattering representations, we use
measured heterogeneous subsurface scattering data sets from
Peers et al. [36] and Song et al. [41]. In our measured sub-
surface scattering representation procedure, we use a parallel
implementation of GAs [13,31], and an implementation of
the SVD function [35] in MATLAB. We perform compar-
isons on 8 different real-world translucent materials, varying
from fairly homogeneous to highly heterogeneous materi-
als. Table 2 gives an overview of the modeled heterogeneous
translucent materials and lists a number of statistics for our
GenSSS model, based on typical values for K . These results
demonstrate that our representation gives a high compression
ratio together with high visual accuracy.

Figure 10 shows the results from using GenSSS with
varying values of K for artificial stone, chessboard (8 × 8),
marble (close up) and yellow wax materials. We report the
root-mean-square error (RMSE), the peak signal-to-noise
ratio (PSNR) [37] and false-color difference images to better
illustrate the effects of the parameter K used in our repre-
sentation. These results show that our method provides high
compression ratios (CRs) when lower values of K are used.
At the same time, our representation captures visually plausi-
ble heterogeneous subsurface scattering effects.When higher
values of K are preferred, we achieve high accuracy, but at
the expense of compactness and rendering times, as shown
in Fig. 9.

In Fig. 11, we compare our model with Song et al.’s [41]
SubEdit representation on a selection of heterogeneous
translucent materials. To better illustrate the effects of
subsurface scattering, the scenes are rendered under spot illu-
mination using a Monte Carlo path tracing algorithm. All
scenes are rendered at 16 samples/pixel with 4 bounces of
interreflections.We set K to 10 for all translucentmaterials to
compare both subsurface scattering representations at com-
parable data storage levels. We again report the RMSE, the
PSNR [37] and false-color difference images to better visu-
alize the differences between the representations. Figure 12
shows a comparisonof diffuse albedos to better visualize high
anisotropy and interesting subsurface scattering structures, as
both jade and the chessboard (4× 4) exhibit these behaviors
quite well [42]. As seen in Figs. 11 and 12, our GenSSS
model captures highly anisotropic translucency effects and
interesting heterogeneities more accurately for comparable
data storage requirements.

Similar to Peers et al. [36], and Song et al. [41], we
also compare measured and modeled subsurface responses
of selected surface points in Fig. 13. In this comparison, the
dashed square approximately equals the kernel size and illus-
trates the relative size of the responses. The data storage sizes
and RMSE values of compared subsurface scattering repre-
sentations are reported in Fig. 11. The SubEdit representation
is designed for editing heterogeneous translucent materials.
It can be viewed as a decomposition of the diffuse BSSRDF,
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Fig. 12 A diffuse albedo comparison between Song et al.’s SubEdit
model [41] and our GenSSS model at comparable data sizes. We also
computed false-color difference images between measured albedos and
corresponding approximations of models. Note that for better compar-
ison, false-color differences were scaled by a factor of ten. We also

report PSNR values (higher is better). Although chessboard (4×4) and
jadematerials exhibit high anisotropy and interesting subsurface scatter-
ing structures, our subsurface scattering model exhibits these behaviors
quite well

into the product of two local scattering profiles defined at the
incident and outgoing surface locations. These spatially vary-
ing 1D scattering profiles increase the storage demands for
the SubEdit representation. The SubEdit representation may
show radially symmetric behavior at somematerials (see blue
wax and yellow wax in Fig. 13), due to the parameterization
used, which may be insufficient for representing heteroge-
neous materials accurately. The comparisons outlined show
that our GenSSS model represents heterogeneous translu-
cent materials more accurately for comparable data storage
requirements.

We also compare our model with the NMF-based subsur-
face scattering representation, see Fig. 14. In the data fitting
procedure, we minimize the RMSE values of the subsurface
scattering representations and use a MATLAB implemen-
tation of the NMF technique [35]. Figure 14 may also be
considered as a comparison between Peers et al.’s factored
subsurface scattering model [36] and our subsurface scatter-
ing model at equal data sizes, since the core part of Peers
et al.’s factored subsurface scattering model is based on the
NMF technique. In Fig. 15, we also compare Peers et al.’s
factored subsurface scattering model and our model at com-
parable data sizes. As shown in Fig. 15, our GenSSS model
represents responses around the peak (i.e., d = xo − xi ≈ 0)
more accurately. This is mainly due to our applied transfor-
mation together with our genetic optimization. NMF-based
factored representations enforce nonnegativity in the data
fitting process, and this constraint causes an increase in
modeling errors. Our method does not enforce nonnegativ-

ity in the data representation process; instead, we satisfy
this when discovering the fittest transformation by applying
constraints to the parameters in our GA. While NMF-based
representations [36] decompose BSSRDF data into the prod-
ucts of matrices, our GenSSS representation consists of the
univariate functions.Consequently, ourmodel represents het-
erogeneous translucent materials more accurately than the
NMF-based factored subsurface scattering representations
for comparable data storage requirements.

Table 3 compares storage needs of various subsurface scat-
tering representations. We selected a value for K as 5 for all
the translucent materials used in this comparison. The results
show that our model is (∼ 2.32×) more compact than the
SubEdit representation [41] and (∼ 3.71×) more compact
than Peers et al.’s factored subsurface scattering representa-
tion [36]. This is due to the fact that our representation needs
onlyone-dimensional (1D) scatteringprofiles (9 scalar values
from the transformation ID:14, K times f j (xi ) and h j (d) in
Eq. 3). In contrast, Peers et al.’s [36] representation requires
a higher number of terms and larger matrices and Song et
al.’s [41] needs higher sizes of spatially varying 1D scattering
profiles. Finally, Table 4 lists a comparison of rendering times
for various subsurface scattering representations. Again, we
set K to 5 for all translucent materials used in this compar-
ison. All our computations were performed on a dual Intel
Xeon E5-2640 v3 CPU@2.6 GHz with 80 GB RAM work-
station. These results show that GenSSS gives comparable
rendering times to Song et al.’s [41] SubEdit representa-
tion (on average, our model is ∼ 0.1 minutes faster than
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Fig. 13 A response comparison between the SubEdit model [41] and
our model at comparable data sizes. For each material, the diffuse
albedo map, a relative error distribution plot of our representation
and a selection of measured responses with the corresponding models
approximations are shown. The locations of the responses were marked

on the diffuse albedo map. We also computed false-color difference
images betweenmeasured responses and corresponding approximations
of models.Note that for better comparison, false-color differences were
scaled by a factor of ten. We also report PSNR values (higher is better)

the SubEdit model), which is designed for editing and near
real-time rendering of heterogeneous translucent materials.
The SubEdit representation uses a lower number of terms, but
it applies both square root and exponential transformations
to all surface points. Our model applies an exponential trans-
formation (from transformation ID:14) to only an optimum
range of response functions, found by our GA. Real-time
rendering and editing of Song et al.’s [41] SubEdit represen-
tation would require an alternative rendering technique from
the Monte Carlo path tracing algorithm we employ for this
study. Such an alternative rendering technique would also
workwith ourGenSSS representation. Furthermore,GenSSS
is much faster than Peers et al.’s [36] representation (on aver-

age, our model is ∼ 2.2min faster than Peers et al.’s model),
as ours requires a lower number of terms comparedwithPeers
et al.’s approach for rendering translucent materials. Peers et
al.’s model computes subsurface scattering profiles through
a multiplication of matrices of homogeneous and heteroge-
neous approximations making it computationally intensive.

6 Applications

This section shows examples of how the measured hetero-
geneous subsurface scattering data can be converted into a
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Fig. 14 A visual comparison between the NMF-based subsurface scat-
tering model [36] and our model at equal data sizes on Buddha, statue,
dragon and Lucy objects under spot lighting. Note that for better com-
parison, false-color differences were scaled by a factor of ten

homogeneous subsurface scattering representation by simply
using a rank-1 approximation of SVD.

To construct the homogeneous BSSRDF data that exhibits
radially symmetric behavior (locally homogeneous), we use
the reparameterized matrix R′

d(xi , d), and apply the follow-
ing computation, similar to Peers et al. [36]:

Gd(xi , xo) = g(d) = g(xo − xi ) = avgxi (R
′
d(xi , d)), (4)

where g(d) is an average response function. Gd(xi , xo) is an
approximation of the homogeneous BSSRDF data. There-
fore, g(d) can be used to create homogeneous BSSRDF data
Gd(xi , xo). After we compute the homogeneous BSSRDF
data Gd(xi , xo) from Rd(xi , xo), we use the same reparam-
eterization in Fig. 2 to compute G ′

d(xi , d). The computation
in Eq. 4 is essentially a radial averaging of the BSSRDF
profiles. After we construct the homogeneous BSSRDF data
using Eq. (4), we represent it with a rank-1 approximation
of SVD. Figure 16 shows that our homogeneous subsurface
scattering representation provides an almost ideal represen-
tation (RMSE=0 for all materials), as h1(d) in Eq. 3 mostly
equals g(d) in Eq. 4. Our representation is easy to compute
(K = 1) and provides a very compact solution, since we sim-
ply store g(d) for each color channel separately. It can also
be used in real-time rendering of homogeneous translucent
materials.

Fig. 15 A response comparison between Peers et al.’s factored
model [36] and our model at comparable data sizes. For each mate-
rial, the diffuse albedo map, a relative error distribution plot of our
representation and a selection of measured responses with the cor-
responding models approximations are shown. The locations of the

responses were marked on the diffuse albedo map. We also computed
false-color difference images between measured responses and corre-
sponding approximations of models. Note that for better comparison,
false-color differences were scaled by a factor of ten. We also report
PSNR values (higher is better)
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Table 3 Required storage
spaces of various subsurface
scattering representations for
different heterogeneous
translucent materials

Material name Measured Peers et al. model (MB) SubEdit model (MB) Our model K = 5 (MB)

Blue wax 572MB 8.29 5.61 2.48

Chessboard (4 × 4) 2.61GB 38.07 21.08 8.96

Jade 1.85 GB 25.6 18.57 7.88

Yellow wax 421MB 6.1 3.60 1.56

Rendering data were prepared in binary double precision for all subsurface scattering representations. Storage
needs of Peers et al., SubEdit and our representations were computed for comparable visual quality

Table 4 Rendering times (in
minutes) of various
heterogeneous subsurface
scattering representations on a
dragon scene under spot lighting
with a Monte Carlo path tracing
algorithm (see Fig. 11)

Material name Measured Peers et al. model SubEdit model Our model K = 5

Blue wax 6.76 10.52 8.19 8.33

Chessboard (4 × 4) 6.94 8.77 7.72 7.26

Jade 6.74 8.43 7.59 7.31

Yellow wax 7.05 13.05 8.97 9.18

All scenes were rendered at 16 samples/pixel. Rendering times of Peers et al., SubEdit and our representations
were computed with comparable visual quality

Fig. 16 By using our subsurface scattering model, homogeneous subsurface scattering effects can be captured from measured translucent materials
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7 Conclusions and future work

In this paper, we introduce our GenSSS representation for
measured subsurface scattering data. This is based on a
genetic algorithm together with the SVD technique. We
describe our genetic optimization framework, geared toward
discovering the fittest transformation for measured subsur-
face scattering data. The accuracy, efficiency and compact-
ness of our model are validated through comparisons with
a selection of different real-world translucent materials. We
show that our compact GenSSS representation can be applied
to any geometry and can be easily integrated into a standard
global illumination rendering systemwhile yielding convinc-
ing images.

Furthermore, we present an analysis of the effects of
parameters of our subsurface scattering model on accuracy,
compactness and efficiency of our GenSSS model. We also
compare our approach with Peers et al.’s [36] factored and
Song et al.’s [41] SubEdit models. Through this compari-
son, we demonstrate that our GenSSS model can represent
heterogeneous subsurface scattering effects more compactly
and accurately than previous methods, also offering good
rendering times. This makes our representation a suitable
candidate for real-time rendering applications. Finally, we
demonstrate that our subsurface scattering representation can
be used to convert heterogeneous translucent materials into
homogeneous ones. In the future, we plan to investigate ren-
dering algorithms for employing our GenSSS representation
in screen-space, to render translucent materials in real-time
applications. We are also interested in exploring the use of
general solutions and reparameterizations for even better
representations of homogeneous, quasi-homogeneous and
heterogeneous subsurface scattering profiles utilizing our
genetic optimization framework.
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