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Abstract
Measured materials are rapidly becoming a core component in the photo-realistic image synthesis pipeline. The reason is that
data-driven models can easily capture the underlying, fine details that represent the visual appearance of materials, which can
be difficult or even impossible tomodel by hand. There are, however, a number of key challenges that need to be solved in order
to enable efficient capture, representation and interaction with real materials. This paper presents two new data-driven BRDF
models specifically designed for 1D separability. The proposed 3D and 2D BRDF representations can be factored into three
or two 1D factors, respectively, while accurately representing the underlying BRDF data with only small approximation error.
We evaluate the models using different parameterizations with different characteristics and show that both the BRDF data
itself and the resulting renderings yield more accurate results in terms of both numerical errors and visual results compared to
previous approaches. To demonstrate the benefit of the proposed factored models, we present a new Monte Carlo importance
sampling scheme and give examples of how they can be used for efficient BRDF capture and intuitive editing of measured
materials.

Keywords Reflectance modeling · Rendering · Computer graphics

1 Introduction

Over the last decade, we have seen the development of com-
puter graphics algorithms and techniques which enable the
quality and accuracy needed to make rendered images truly
comparable to photographs of the same scene. The accuracy
in the simulation of scattering at surfaces and computa-
tion of the light transport in a scene is determined by the
way the material properties such as color and reflectance,
modeled by the Bidirectional Reflectance Distribution Func-
tion (BRDF) [30], are measured and represented. This has
led to the development of both accurate parametric mod-
els [3,8,11,16,24,35,47], and advanced data-driven methods
[20,26,29] for describing, measuring and analyzing for vir-
tually all classes of materials.
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Recently, measured materials and appearance capture
techniques havegained significant popularity, for anoverview
see [14,23]. The advantage of data-driven approaches is that
carefully measured BRDFs automatically bring the detailed
appearance of real-world materials into rendering pipeline.
There are, however, still a number of important challenges
that need to be solved in order to make data-driven models
flexible and easy to use in practice. First, although signif-
icant progress has been made, [1,31], accurate BRDF and
SvBRDF measurements are still challenging due to mechan-
ical and computational complexity. Second, measured data
are difficult to edit, analyze, and in other ways interact with.
It is, therefore, necessary to further develop compact rep-
resentations which allow for detailed representations of the
reflectance distributions with minimal approximation errors.

In this paper, we set out to address these challenges by
developing a new class of separable data-driven BRDFmod-
els which allow for compact representations of BRDFs in
a low-dimensional space. We focus on isotropic BRDFs
and propose a new separable BRDF representation inspired
by the projected deviation vector (PDV) parameterization
described by Löw et al. [24]. The result is a compact and intu-
itive data-driven model, in which BRDFs can be described
using independent one-dimensional (1D) strictly nonneg-
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ative factors, with a smaller error than previous factored
representations. The independent 1D factors also enable effi-
cient importance sampling, which is important to Monte
Carlo rendering algorithms. In contrast to previous BRDF
factorization methods, see for example [7,38], our separable
BRDF model is described by intuitive factors which enable
detailed user control for analysis or editing. The main con-
tributions of this paper are:

– A study of the separability of existing data-driven BRDF
models.

– TwonewBRDFmodels specifically designed for efficient
3D and 2D representation with 1D separability.

– A novel importance sampling strategy for data-driven
BRDFs of PDV parameterization.

– PDVbasismeasurement and intuitiveBRDFediting from
mixture of PDV factors.

We evaluate and compare our models to current state-
of-the-art using the measured BRDF data from the MERL
database [26], and show that the proposed BRDF models
lead to very small approximation errors and produce visually
plausible results in renderings. To demonstrate the benefit of
our approach, we discuss how the separable representations
can be used for applications such as BRDF capture, compact
and accurate representations, efficient important sampling of
measured BRDFs, and artistic editing of measuredmaterials.

2 Background

The analysis and new BRDF models presented in this paper
build upon a large body of previous work in appearance mea-
surement and modeling. The following subsections describe
how our work relates to data-driven BRDF models, exist-
ing BRDF parameterizations, and previous approaches for
BRDF factorization.

Data-Driven BRDF Models The way in which light inter-
acts with matter is, in computer graphics, described using
the rendering equation [17]. In the rendering equation, the
scattering at each surface point in a scene is modeled by
the BRDF [30]. Accurate and efficient BRDF models are
essential components in the rendering of complex synthetic
scenes for photo-realistic rendering. Measured BRDF data
are commonly stored using the standard parameterization
which expresses the BRDF directly in spherical coordinates,
(ωi , ωo). Reparameterization of BRDFs has been studied
extensively for decades in order to find more efficient and
compact representations. A good representation should ide-
ally lead to reducing storage requirement (i.e., provides
compactness), an intuitive representation for user editing pur-
poses, and enable efficient importance sampling. Previous
works have explored factorization methods in order to find

compact representations directly in the standard parameteri-
zation [27,44]. However, other parameterizations such as the
Half-Diff parameterization [39] and the Half-Out parame-
terization [21] have also been proposed for obtaining more
compact representations [7,32,38] and efficient importance
sampling procedure [21]. However, previous works have
not proposed both compact and intuitive representations of
BRDF data, allowing for intuitive user edits, flexible and
practical measurement setups, and efficient importance sam-
pling.

In this work, we focus on reparameterization of isotropic
BRDFs. Our work is inspired by the parametric ABC BRDF
model [24], and we compare their projected deviation vector
(PDV) parameterization to the more commonly used param-
eterizations used by Rusinkiewicz [39] and Lawrence et al.
[21]. The main contributions of this paper are that the result-
ingBRDFparameterization enables us to representmeasured
BRDF data with as little as only two 1D factors for ade-
quate representation, and we introduce a new representation
of the deviation vector. In contrast to previous data-driven
BRDF models, the proposed BRDF parameterization also
induces a clear separability in both 2D and 3D representa-
tions. Moreover, we investigate factorization methods based
on both 2D and 3D representations in order to show that
the separability of our parameterization leads to very com-
pact BRDF representations, well approximated with a rank-1
tensor approximation with nonnegative factors intuitive for
BRDF editing.

In many applications, it is useful to represent isotropic 3D
BRDFs with 2D approximations. 2D BRDF representations
have shown to be useful both for efficient storage, in acqui-
sition systems and other computer vision problems [13,37].
Romeiro et al. [37] proposed a simple transformation from
3D to 2D formeasuredBRDFs stored in theHalf-Diff param-
eterization. In the Half-Diff parameterization, the parameters
(θh, θd , φd) are reduced to (θh, θd) by taking the average
over φd . Stark et al. [43] presented mathematical relations
of (ωi , ωo) on Barycentric coordinates and proposed three
2D parameterizations. However, these parameterizations are
based on unintuitive and complex mathematical functions
which limit user intuition. Barla et al. [5] proposed a param-
eterization which is similar to the PDV; however, there is not,
to our knowledge, anyBRDFmodel support for their parame-
terization. Thus, it would limit the use of its parameterization
and importance sampling strategy.

BRDF Factorization In previous work, it has been shown
that measured BRDFs can be factored into basis repre-
sentations to enable compact representations for efficient
rendering and editing. Kautz and McCool [18] proposed
the normalized decomposition (ND) method for interactive
rendering. In their work, they used a modified Half-Diff
parameterization to avoid numerical instability.McCool et al.
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[27] developed homomorphic factorization on the standard
parameterization. The homomorphic factorization is applied
on logarithmically transformed data to ensure that the fac-
torized results do not contain negative values. Lawrence et
al. [21] proposed the double factorization method on the
Half-Out parameterization for material editing applications.
The method uses nonnegative matrix Factorization (NMF)
[22] on 4D BRDF data. They rearranged 4D BRDFs into
2D BRDFs so that the double factorization could be applied.
However, accurate results required a high number of terms in
the factorization. Bagher et al. [4] proposed factored BRDF
models based on the microfacet BRDF model [11] by using
specific weighting functions in optimization process. The
resulting models are efficient representations; however, the
importance sampling is still an issue on their models; thus,
their models require complicated sampling method such as
multiple importance sampling (MIS)[40,41,46] or precom-
puted sampling scheme [25]. Ben-Artzi et al.[6] proposed
factored BRDFmodels in the form of linear combinations of
wavelet bases to enable real-time BRDF editing and render-
ing. Their method supports both parametric and analytical
BRDF models. An interesting venue for future work is to
investigate how our models can be incorporated with their
system for editing and rendering.

Tensor factorization methods have also been applied
to BRDFs. Sun et al. [44] applied Tucker factorization
on the standard parameterization for interactive relight-
ing. Schwenk et al. [42] used CANDECOMP/PARAFAC
Decomposition (CPD) method [9,15] on the standard param-
eterization with an additional dimension which is for wave-
length information. The method iteratively applies the rank-
1 approximation of the CPD method with repetition of
residual factorization. They found that in standard spheri-
cal coordinates, the CPD method works better on diffuse
and moderately glossy materials; while using the Half-Diff
parameterization, CPD works well with glossy materials. A
problem, however, is that themethod needs at least four factor
packs, i.e., the number of iterations on residual factoriza-
tion, to accurately approximate BRDFs. Later, Ruiters and
Klein [38] presented a way to improve optimization of ten-
sor factorizations. They used the Half-Diff parameterization
and applied the CPD method on BRDFs transformed to the
log-domain using the square of the relative error as the error
metric in the optimization. This error metric can provide bet-
ter approximation compared to using the more common L2

error metric. However, the output needs up to eight com-
ponents, i.e., rank-8 approximation, to get accurate results.
Bilgili et al. [7] employed the Tucker factorization on 4D
BRDFs to represent both isotropic and anisotropic materi-
als in the log-domain. In their work, they simplified the three
color channels into one luminance channel and factorized the
luminance data. To get RGB BRDF data, a linear regression
model is fitted to each of color channels. It is reported that

measuredmaterials [26] need up to 13-15 iterations of rank-1
approximations to get accurate results. In contrast to previous
work, we show our proposed models can accurately describe
BRDFs as a single term rank-1 nonnegative approximation,
which allows for both compact and intuitive BRDF models.

3 BRDF parameterization

The first step in creating a separable BRDF representation
is to select a suitable parameterization. In this section, we
give an overview of the BRDF parameterizations introduced
by Rusinkiewicz [39], Lawrence et al. [7,21], and Löw et al.
[24] and analyze their behavior with respect to separability
and factorization. We show that they are all good choices
for going from 3D to 2D and that the characteristics of the
projected deviation vector parameterization[24] make it a
particularly good choice for separable BRDF models. This
analysis then forms the basis for the new models proposed
in this paper.

The values of a BRDF typically exhibit a very high
dynamic range [31]. To avoid computational problems in
such as factorizations and basis representations, it is therefore
common to transform theBRDFvalues to the log-domain. To
represent BRDFs efficiently for factorization, we transform
the data values using ρt = log(ρ + 1).

The Half-Difference vector parameterization (Half-Diff)
was introduced by Rusinkiewicz [39], who showed that the
specular and retroreflective lobes are aligned with the pro-
posed Half-Diff parameterization. This results in a reduced
number of basis coefficients required to accurately represent
measured BRDF data and lower memory storage of isotropic
BRDFs compared to anisotropic BRDFs. This parameteriza-
tion has seen widespread use for storing isotropic BRDFs
from measured data [26]. Figure 1a illustrates the formation
of the vectors and the notations used for the Half-Diff param-
eterization. The parameterization is formed by two vectors,
defined in spherical coordinates, the half vector(θh, φh) and
the difference vector(θd , φd). The half vector, ωh , is the
normalized vector sum of ωi and ωo, given in Eq. 1. The
difference vector, ωd , represents the ωi vector in the trans-
formed space. The transformed space is obtained by rotating
the hemispherical space so that the half vector is the normal
of the transformed space, see Eq. 1.

ωh = ωi + ωo

‖ ωi + ωo ‖ ,

ωd = rotb,−θh rotn,−φhωi ,

(1)

where rotx,aY denotes the rotation of Y around x by a◦.
Moreover, n and b are the normal and binormal vectors to
the plane, respectively.
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Input: (θi , φi , θo, φo)

Result: Return the PDV parameters(θr , dp, φp)

θr = θo
φi = φi − φo
φo = 0.0
Rp = (sin(θo)cos(φo + π), sin(θo)sin(φo + π))

L p = (sin(θi )cos(φi ), sin(θi )sin(φi ))

Dp = L p − Rp
dp = len(Dp)

φp = atan2(Dp .y, Dp .x)
Algorithm 1: Standard-to-PDV parameterization conver-
sion.

TheHalf-Diff parameterization has four parameterswhich
are (θh, φh, θd , φd). To represent isotropic BRDFs, φh can be
ignored because isotropic BRDFs are independent of φh due
to symmetry.

The Half-Outgoing vector parameterization (Half-Out)
has been used for BRDF factorization in several previous
studies [7,21]. The Half-Out parameterization is formed by
(ωh, ωo), the half vector, and the outgoing vector. Figure 1b
illustrates the vectors and their notations. When ωo is fixed,
changing ωh results in moving ωi . Here, the half vector is
similar to the Half-Diff parameterization defined by the nor-
malized sum of ωi and ωo, given in Eq. 1.

For isotropic materials, the 4D BRDFs can thus be
reduced to 3D BRDFs representations where the BRDFs
can be parameterized by either (θo, θh, φh) or (θh, θo, φo).
In Sect. 3.1, we show illustrations of the Half-Out coordi-
nates and its characteristics.

The projected deviation vector parameterization (PDV)
was used in the parametric ABC BRDF model proposed by
Löw et al. [24]. The generalized version of the PDV parame-
terization can be defined by (ωr , Dp)whereωr is represented
by spherical parameters (θr , φr ) and (dp, φp) denote the Dp

vector. Additionally, ωr is the perfect reflection vector of ωo.
The Dp vector is formed by the deviation vector between the
projections ofωr andωi on the plane. Figure 1c illustrates the
parameter formations and notations used in the PDV param-
eterization. For isotropic BRDFs, the PDV parameterization
has three parameters (θr , dp, φp), where θr is the zenith angle
of the perfect reflection vector from the normal and dp is the
length of the Dp vector. Its values are [0, 2). Lastly, φp rep-
resents the azimuthal angle of the Dp vector in the projection
plane. Algorithms 1 and 2 show how the conversions from
standard coordinates to the PDV parameterization and vice
versa are carried out.

Since dp describes the shape of the BDRF lobe, the quan-
tization over its [0, 2) domain will affect the accuracy. To
accurately represent a sharp lobe, very high resolution is
required in the quantization. Figure 2 shows plots of two
BRDFs demonstrating that most of the variation in the lobes
can be found around small dp parameter values, and that

Fig. 1 The coordinates of each parameterization are plottedwith a fixed
vector

Input: (θr , dp, φp)

Result: Return the Standard parameters(θi , φi , θo, φo)

Rp = (−sin(θr ), 0.0)
L p = (dpcos(φp) + Rp.x, dpsin(φp) + Rp.y)
if len(Rp) > 1.0 or len(L p) > 1.0 then

return null
else

φi = atan2(L p .y, L p .x)

θi = abs(asin(
L p .x

cos(φi )
))

if θi > π
2 then

return null
else

θo = θr
φo = 0.0

end
end

Algorithm 2: PDV-to-Standard parameterization conver-
sion.
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Fig. 2 The figures contain examples of BRDFplots in the PDVparame-
terization. BothBRDFs are from a fixed angle of θr = 45◦ andφp = 0◦.
Vertical axis is BRDFs scaled by logarithmic function and Horizontal
axis is dp resolution. The left figure shows the BRDF of alum-bronze
which represents the class of glossy materials. The right figure shows
the BRDF of blue rubber which represents the class of diffusematerials.
It is apparent that BRDFs in the PDV parameterization aligned mostly
around small dp
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Fig. 3 Variation of nonlinear step length in the quantization varieswhen
the dp = |Dp| domain in 90 steps. The step length gets longer further
away from the perfect reflection direction and the steep parts of the
BRDF lobe

most of the remaining parts are slowly varying and even flat.
Basedon these observations,weuse an adaptive quantization.
To find a good quantization that works in the general case,
we compute the mean BRDF over a large collection of real
materials and compute the nonlinear adapted step length in
the quantization using the inversionmethod, for an overview,
see the textbook by Pharr and Humphreys [34]. The resulting
quantizationwith 90 nonlinear quantization steps, used in our
experiments, is shown in Fig. 3. For the experiments in this
paper, we used theMERLBRDF database [26]. Althoughwe
used all BRDFs in the MERL database, it should be noted
that it may be beneficial to group them into classes and use
different quantizations for different types of materials. Such
analysis, however, is beyond the scope of this paper and left
for future work.

3.1 Analysis of parameterizations

The different parameterizations described above can all accu-
rately describe isotropic BRDFs using their inherent 3D
representation. Since our goal is to reduce the dimensionality
of themodels required to accurately representBRDFdata,we

analyze how well the 3D representation can be represented
in 2D. To do this, we first, in Fig. 4, plot the projection of
the 3D coordinates on the hemisphere onto the unit disk for
regular points in the parameter spaces. The top row shows the
Half-Diff parameterization, with parameters (θh, θd , φd), for
a fixed θh = 30◦, 70◦. The plots show how ωo moves on the
hemisphere and in the projection plane when ωd is varied.
The middle row shows the Half-Out parameterization, with
parameters (θo, θh, φh), and a fixed θo = 30◦, 70◦. The plots
show how ωi changes as a function of ωh . Finally, the bot-
tom row shows the same plots for the PDV parameterization,
with parameters (θr , dp, φp). By varying dp and φp with a
fixed angle of ωr = 30◦, 70◦, only ωo is changed and forms
circles in the projection plane. In fact, for smooth surfaces
Löw et al. [24] observed that these circles closely model the
iso-contours on the BRDF lobe. This means that the BRDF
values along each circle are close to constant.

Further conclusions can be drawn from visualizing real
BRDF data. Figure 5 illustrates an example from our inves-
tigation where the alum-bronze BRDF is plotted in each
of the parameterizations, respectively. The three leftmost
columns demonstrate how the 2D slices in the 3D representa-
tion vary along the third dimension of each parameterization.
Figure 5a–d illustrates theBRDFdata in theHalf-Diff param-
eterization along the φd , Fig. 5e–h illustrates the BRDF
data in the Half-Out parameterization along the φh dimen-
sion, and Fig. 5i–l illustrates the BRDF data in the PDV
parameterization along the φp dimension. The right column
shows the corresponding 2D representation computed as the
mean over all slices in the third parameter dimension for
each parameterization. The plots illustrate that for all three
parameterizations, theBRDFvalues are stable along the third
dimension, which supports the conclusion that they are suit-
able choices for going from a 3D to a 2D representation.
Visual inspection of the BRDFs in the MERL database also
shows that data represented in the PDV parameterization is
better aligned (horizontally and vertically) in the 2D plane
compared to the Half-Diff and Half-Out parameterizations.
As we show in the next section, this structure makes it pos-
sible to accurately factorize the 2D representation into a 1D
+ 1D factored BRDF model.

4 BRDF factorization

Accurate factorization requires both a representation which
enables separability and a suitable factorization technique
adhering to the requirements put by the application. The
choice of parameterization, such as the PDV parameteri-
zation presented in the previous section, is thus a key for
an efficient low-rank approximation as unstructured data
or diagonally structured data results in high rank factoriza-
tions [33]. It is highly desirable that the BRDF data can be
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Fig. 4 Figure a–d illustrates the coordinate samples of the Half-Diff
parameterization with fixed angles of θh = 30◦, 70◦ and varying θd , 2
degrees apart, and rotating φd ∈ (0, 2π). Figure a and b were sampled
on the hemisphere. Figure c and d were sampled on the disk. Figure
e–h illustrates the coordinate samples of the Half-Out parameterization

with fixed angles of θo = 30◦, 70◦ and varying θh , 2 degrees apart, and
rotating φh ∈ (0, 2π) on the hemisphere and the disk, respectively. Fig-
ure i–l illustrates the coordinate samples of the PDV parameterization
with fixed angles of θr = 30◦, 70◦ and varying dp , 0.044 apart, and
rotating φp ∈ (0, 2π) on the hemisphere and the disk, respectively

approximated using nonnegative rank-1 approximations so
that the data can be represented as nonnegative univariate
functions which lead to intuitive representations for applica-
tions such as BRDF capture and editing.

Data factorization can be carried out in several ways. In
previous work, nonnegative matrix factorization (NMF) [22]
has been a popular choice for factorization of BRDF data, see
for example the paper by Lawrence et al. [21]. Another com-
monly used technique is Tucker decomposition [45], which
decomposes a tensor into several factors. For 3D data, the
approximated data can be computed by a sum of factor prod-
ucts and a core tensor. For the models presented in this paper,
we employ a tensor factorization technique called CAN-
DECOMP/PARAFAC Decomposition, Canonical Polyadic
Decomposition (CPD) [9,15] with the nonnegativity con-
straint. Compared to the Tucker decomposition, the CPD
method is less expensive to compute for random access.
Moreover, the Tucker decomposition has a core tensor, [10],
which grows exponentially in size if the approximation rank
is high. A large tensor core thus leads to higher storage
requirements for factorized BRDFs compared to CPD.

For rank-1 approximations, the three techniques are com-
parable in terms of approximation error. Figure 6 shows a
comparison of Tucker decomposition and CPD applied to
BRDF data from the MERL database [26] represented using
the PDV, Half-Out, and Half-Diff parameterizations for 3D
data described in the previous section. Figure 7 shows sim-
ilar plots but compares NMF and CPD for factorization of
2D data as described in the previous section. Table 1 and 2
show the errors fromFigures 6 and 7 in numerical form show-
ing that the PDV parameterization exhibits the smallest mean
error and lowvariance as compared to theHalf-Diff andHalf-
Out parameterizations. Although the error varies between the
different factorizationmodels, the approximation accuracy is
more or less the same for all three factorization techniques.
Given advantages such as a lower computational complexity
and efficient random access, we use the CPDmethod for both
3D and 2D data.

Rank-1 iterative factorization In some cases, it is desir-
able to trade the single factor representation for achieving a
higher accuracy in the factorization. This can be done using
iterative factorization such that the residual is represented
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Fig. 5 The plots show the alum-bronze BRDF of each parameteriza-
tion in logarithmically transformed space. The Half-Diff (θh, θd , φd ),
Half-Out (θo, θh, φh), and PDV (θr , dp, φp) parameterizations of the

alum-bronze BRDF are shown on each row, respectively. Each column
shows the BRDF in which one of the parameters was varied. The last
column shows the 2D BRDF representations of each parameterization

using a higher number of factors for the parameter dimen-
sions, for an overview see [7,19,42]. In our models, we have
the option of using an iterative method for residual factor-
ization. Since the intuitiveness inherent to the single factor
representation is lost, we do not enforce the nonnegative con-
straint for the residual factorization as this has the tendency
to lead to a smaller error. Starting from the original tensor,
we constraint the first factorization with the nonnegativity in
order to preserve the physical meaning within the BRDFs.
For the residual parts, we iteratively factorize the residuals
without any constraint, allowing negative values.

5 New BRDFmodels

This section presents twonew separableBRDFmodels, in 3D
and in 2D, which are based on the above analysis of the PDV
parameterization and factorization techniques. The separable
models are designed to enable factorization into three or two
1D factors, respectively.

3D separable BRDF model The first model describes
BRDFs using the 3D PDV representation and can be
expressed as:

ρt (θr , dp, φp) =
L∑

l=1

F1,l(θr )F2,l(dp)F3,l(φp) (2)

where ρt = log(ρ + 1). F1,l , F2,l , F3,l are the 1D factored
functions from the rank-1 iterative CPD method applied to
the 3DBRDF representation, and L is the number of iterative
terms. As mentioned above, the BRDF can be accurately
represented using single factors or a higher number of factors
without the nonnegativity constraint to further reduce the
approximation error.

2D separableBRDFmodelAssuming that theBRDFvalues
are constant over the φp parameter in the PDV parameter-
ization, our 2D representation can be computed by either
averaging over the φp dimension or by selecting a single
slice from the BRDF. Our proposed 2D separable BRDF
model is applied on top of the 2D BRDF representation
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Fig. 6 Both plots show errors between the BRDF data and its rank-1
approximation. The Tucker decomposition was used in (a). The CPD
method was used in (b). Both methods were applied on three different
parameterizations. Blue line represents errors from the PDV parameter-
ization. While red and yellow lines represent errors from the Half-Out
and the Half-Diff parameterizations, respectively

by using the rank-1 CPD method. This can be formulated
as:

ρt (θr , dp) = G1(θr )G2(dp) (3)

where G1,G2 are the 1D factored functions from the rank-1
CPD method on 2D BRDF representation.

5.1 Importance sampling

Efficient BRDF sampling is a key building block in modern
MonteCarlo algorithms. For a givenBRDF, importance sam-
pling relies on deriving a distribution, or probability density
function (PDF) from which samples are drawn during ren-
dering. If the PDF is proportional to the underlying BRDF,
the variance of the Monte Carlo estimator is reduced. In this
section, we describe how to compute PDF from the PDV
factorization.

The goal of computing the PDF is to find the conditional
probability, p(dp, φp|θo), so that, for a given viewing direc-
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(b) The CPDmethod

Fig. 7 Both plots show errors between the 3D BRDF data and its fac-
tored 2D representations. The NMF was used in (a). The CPD method
was used in (b). Both methods were applied on three different parame-
terizations. Blue line, red line, and yellow line represent errors from the
PDV, the Half-Out, and the Half-Diff parameterizations, respectively

Table 1 The table shows mean, variance, minimum and maximum val-
ues of log relative errors of all 100 materials in the MERL database for
each method, showing in Fig. 6

Method Mean Variance Min Max

PDV-Tucker3D −8.251643 0.263030 −9.763395 −7.662130

PDV-CPD3D −8.213502 0.264648 −9.737277 −6.843860

HO-Tucker3D −7.586190 0.721300 −8.805157 −4.455247

HO-CPD3D −7.586169 0.721289 −8.805092 −4.455237

HD-Tucker3D −7.676227 1.693427 −10.317398 −3.974776

HD-CPD3D −7.676365 1.693840 −10.316965 −3.974837

tion defined by θo, we can draw optimal directions in which
to sample the lighting environment. Through the mirroring
of ωo, θo and θr can be interchanged. We can thus rewrite the
conditional probability as: p(dp, φp|θr ). Since the φp factor
is constant up to the truncation of the unit circle, the condi-
tional probability can be factored into the multiplication of
two PDFs, p(dp|θr )pφ(φp), where pφ(φp) is a uniformPDF.
The PDV probability density used for importance sampling
can thus be expressed as:
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Table 2 The table shows mean, variance, minimum and maximum val-
ues of log relative errors of all 100 materials in the MERL database for
each method, showing in Fig. 7

Method Mean Variance Min Max

PDV - NMF3D −8.222539 0.236527 −9.622211 −7.661749

PDV - CPD2D −8.195418 0.227387 −9.619088 −7.384546

HO - NMF3D −7.497353 0.835841 −8.768603 −4.215825

HO - CPD2D −7.596027 1.001203 −9.405387 −4.215839

HD - NMF3D −7.541444 1.860140 −9.769958 −3.700108

HD - CPD2D −7.541442 1.860132 −9.769955 −3.700104

p(dpk |θr ) = ρ(θr , dpk , φp)dpk
∑Ndp

j=1 ρ(θr , dp j , φp)dp j Δdp j

. (4)

where Ndp is the resolution of the dp quantization, in our
case 90, and Δdp j is the dp step size. Note that the dp step
size is nonlinear due to the quantization described in Sect. 3.
The term ρ(θr , dp, φp) can be computed by using Eq. 2when
L = 1.

To choose the directions, we compute the cumulative dis-
tribution function (CDF) as:

P(dp|θr ) =
Ndp∑

k=1

p(dpk |θr )Δdpk . (5)

During rendering, we would like to draw sample direc-
tions based on a given probability. One of the simplest ways
to achieve this is to generate a uniform random variable in
range [0,1] and apply the inversion method on the computed
CDF. In this case, we generate two uniform random vari-
ables (ξ1, ξ2) to sample from pφ(φp) and p(dp|θr ). The φp

direction can be computed as:

φp = 2πξ1, (6)

where ξ1 is the uniform random variable. The magnitude
dp = |Dp| of the Dp vector can be found from the CDF
using the inversion method as:

dp = P−1(ξ2|θr ), (7)

where ξ2 is the second uniform random variable.
It is unavoidable to sometimes choose (dp, φp) pairs that

result in invalid ωi directions, i.e., falls outside the domain
of the parameters. However, when such a (dp, φp) pair is
chosen, it is straightforward to reject such samples with-
out introducing inaccuracy using rejection sampling, for an
overview see the book by Pharr and Humphreys [34].

For clarity, the importance sampling above was described
in PDV space. The PDFmust thus be transformed to conform
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Fig. 8 A plot of log(JT ) plot is computed by using Eq. 9 and shows
the valley caused by the sin(θi ) factor in the numerator

to theMonteCarlo estimator in the standard parameterization
using the Jacobian of the mapping:

p(ωi |ωo) = p(dp|θr )pφ(φp)|JT |, (8)

where |JT | is the absolute value of the Jacobian of the trans-
formation. We have pφ(φp) = 1

2π because it is uniform
random over the φp parameter. The Jacobian of the mapping
is expressed as:

JT =
√
2cos(θi )sin(θi )√

2 − cos(2θi )−cos(2θo)+4cos(φi −φo)sin(θi )sin(θo)
.

(9)

where (θi , φi ) is the light direction and (θo, φo) is the viewing
direction.

Unfortunately, the sin(θi ) factor in the numerator intro-
duces a valley in the Jacobian surface, see Fig. 8, alongwhich
it drops to zeros and exhibits numerical instabilities leading
to noise in the renderings. Hence, we propose a smooth ver-
sion of JT , where the sin(θi ) factor is omitted:

JT ≈
√
2cos(θi )√

2 − cos(2θi )−cos(2θo)+4cos(φi −φo)sin(θi )sin(θo)
.

(10)

We have found that removing sin(θi ) does not change the
efficiency of the importance sampling significantly and that
this approximation leads to high quality rendering results.
The effect of the importance sampling is evaluated in the
next section.
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6 Results and evaluation

This section presents an evaluation of the new separable
BRDF models described in Sect. 5, the different parame-
terizations described in Sect. 3 with respect to their ability to
go from 3D to 2D representations, and the effect of the factor-
ization techniques described in Sect. 4 in computing factored
models using the different parameterizations. We also show
examples of how the models presented in this paper can be
used in applications such as storage, efficient BRDF capture
and editing.

To measure the error introduced by the models, we use
the relative root mean square error (RMS) over all the 100
BRDFs in theMERL database [26]. For each combination of
BRDF model, parameterization and factorization, we com-
pute the error over the entire hemisphere. In order to generate
the same set of sample points and avoid unnecessary inter-
polation, we first use a random cosine sampling scheme
in standard spherical coordinates [34] and then transform
each sample into the parameter space of the parameterization
where the error is measured. Both the PDV and Half-Diff
models are represented at a resolution of 90 × 90 × 360
elements for the (θh, θd , φd) and (θr , dp, φp) parameter
dimensions, respectively. We parameterized the Half-Out
parameterization using (θo, θh, φh) and found that the θh
resolution needs to be higher than 90 for high fidelity ren-
derings. Therefore, for the Half-Out, we used a resolution of
45 × 200 × 360 elements in order to ensure a fair compar-
ison. The supplementary material includes both interactive
examples for visual inspection of the proposed models and
rendered examples of all BRDFs in the MERL database.

The CPD3D and CPD2D methods were implemented
using the N-way Toolbox for MATLAB [2] with a non-
negativity constraint for the first iteration, L = 1. For the
experiments, we used the MERL database (including all
measured angles). For CPD3D, we used the PDV parame-
terization at a resolution of 90× 90× 180. All the rendering
results were produced by using PBRT [34]. The fitting time
comparison in Table 3 was carried out using an Intel(R)
Xeon(R) W-2123 3.60GHz computer with 32 GB memory.

Table 3 Fitting time table of CPD3D for L = 1, 5, 10, 15, 20, 25 mea-
sured in seconds

Number of iterations Min Max Mean Variance

1 5.44 8.48 6.89 0.87

5 30.90 92.61 60.88 193.00

10 65.10 201.75 128.74 1147.38

15 112.08 339.16 212.41 2945.60

20 157.91 464.54 297.84 5775.32

25 205.70 597.35 385.42 9434.98

Single factor models in 3D and 2D To evaluate the accu-
racy introduced using the different parameterizations for
the single iteration factorization, we examine the separa-
ble 3D and 2D models described in Sect. 5 using the PDV,
Half-Out, and Half-Diff parameterizations. Figure 6 shows
that, in the separable 3D model described in Eq. 2, the
PDV parameterization (blue plot) on average leads to a
smaller error compared to both Half-Out and Half-Diff for
both the Tucker and CPD factorization schemes. The RMS
is computed as the error between each 3D representation
and its corresponding factored model. Visual inspection of
the rendered BRDFs reveals that the PDV parameterization
produces significantly better results compared to the other
parameterizations, but the Half-Diff parameterization has a
tendency to produce better results for diffuse materials. An
example of this is shown in the second columns (CPD3D-
Iteration-1) in Fig. 10, where renderings of the chrome and
special-walnut-224 BRDFs are visualized for different com-
binations of parameterizations, model dimensionality and
number of iterations. Figure 7 shows the errors introduced
when going from the 3D representations of the PDV, Half-
Out, and Half-Diff parameterizations to the corresponding
factoredmodels in 2Ddescribed in Eq. 3. Similarly to the fac-
tored 3D models, it is evident that the PDV parameterization
on average leads to a smaller error compared toHalf-Out, and
Half-Diff. Visual inspection, see the sixth columns (CPD2D)
in Fig. 10, shows that the PDV parameterization, also in the
2D case, tends to handle glossy materials with small errors
and that the Half-Diff parameterization is better at diffuse
materials. In summary, the evaluations and the renderings
show that the proposed factored 3D and 2D models produce
both small numerical errors and visually plausible rendering
results using only a single factor rank-1 approximation, and
that PDV and Half-Diff are suitable parameterizations for
glossy and diffuse materials, respectively.

Iterative factor 3Dmodel It is sometimes desirable to trade
storage requirements and intuitive control over the BRDF
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Fig. 9 The error plots for the PDV, HO (Half-Out) and HD (Half-Diff)
parameterizations for L = 10 iterations

123



Compact and intuitive data-driven BRDF models 865

Fig. 10 a The chrome and b the special-walnut-224 BRDFs from
the MERL database were rendered with different parameterizations.
Each row shows one parameterization and compares the different fac-
tored BRDF models. The second and fourth columns show the factored

BRDFs using the CPD method with 1 and 10 iterative terms, respec-
tively. The sixth column represents the 2D BRDFs factored using the
CPD method. The third, fifth, and seventh columns visualize the errors
between the reference and each estimated BRDFs

Table 4 The mean, minimum
and maximum errors, and
variance for three different
parameterizations with L = 10
as illustrated in Fig. 9

Method Mean Variance Min Max

PDV- CPD3D L=10 −9.119674 0.432865 −10.903059 −7.764585

HO- CPD3D L=10 −9.018169 0.419751 −10.330703 −6.868430

HD- CPD3D L=10 −9.310537 0.854673 −11.282352 −7.033940

factors for higher accuracy. As described in Sect. 4, this can
be carried out using iterative factorization of the residual
error so that each factor is represented using L basis vectors.
Comparing the error plots in Fig. 6b using L = 1 iteration
to that in Fig. 9 using L = 10 iterations shows that both the

maximum and mean errors are reduced significantly for all
parameterizations, please see Table 4. It is also evident that
the different parameterization on average starts to perform on
par with each other in terms of numerical error. This is likely
due to that the increased expressive power of the higher-order
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models can compensate better for the residual errors. The
fourth column (CPD3D-Iteration-10) in Fig. 10 reveals sim-
ilar behavior for the different parameterizations as for the
L = 1 iteration renderings in the second column. Finally,
Fig. 11 shows examples of how the accuracy varies with an
increasing number of L = 10, 15, and 20 iterations. Com-
paring to the models introduced by Lawrence et al. [21] and
Bilgili et al. [7], the color-coded insets and the peak signal-
to-noise ratio (PSNR) [36] measures show that our iterative
model produces state-of-the-art results. The different models
lead to different storage requirements. Table 5 compares the
storage requirements for each of the models used in Fig. 11
as well as the reference measured BRDF data.

Table 6 and Figure 12 compare the proposed 3D mod-
els to the Naive model proposed by Bagher et al. [4]. The
blue curve in Figure 12 shows the error plot of Naive model
sorted in ascending order. We chose the Naive model as a
representative method from Bagher et al. since it is the sim-
plest method among their models and due to the fact that
Bagher et al. models perform similarly to each other. Our 3D
model with L = 15 performs on par with the Naive model.
When L is increased, our model performs overall better than
to the Naive model. Table 6 summarizes the mean, mini-
mum and maximum errors computed over all BRDFs in the
MERL database comparing our 3D models to Bagher et al.
for different numbers of iterations, L .

Importance sampling Figure 13 compares the impor-
tance sampling technique developed for our factored mod-
els described in Sect. 5.1 to the techniques presented by
Lawrence et al. [21], Edwards et al. [12], and Bilgili et al. [7].
The Figure shows renderings of the Princeton scene gener-
ated using the PBRT rendering system, described in the book
by Pharr and Humphreys [34], with 256 path samples per
pixel. The scene consists of Nickel, Yellow-matte-plastic,
and Blue-metallic-paint materials. The rendered images
show that our importance sampling technique performs better
than Lawrence et al. [21] and Edwards et al. [12] techniques
numerically, but our technique gives numerically worse per-
formance than Bilgili et al. [7] technique. A natural next step,
however, would be to derive a more accurate approximation
of the Jacobian which potentially would lead to even better
results. The color shift on and near the teapot in Fig. 13c
is due to Bilgili et al.’s representation inaccuracy. Because
this representation factorizes intensity channel and then esti-
mates color values linearly as a sub-procedure by a few
linear coefficients. Table 7 shows the rendering time for the
images in Fig. 11 (in seconds). Even with our higher accu-
rate models (L > 15), our factored models have comparable
computational cost compared to Edwards et al. [12], better
computational cost compared to the technique presented by
Bilgili et al. [7], but a higher computational cost compared to
the technique presented byLawrence et al. [21]. Note that our

Fig. 11 A comparison in which the Princeton scene is rendered using
b, c, d and e our 3D model with the PDV parameterization with L = 5,
L = 10, L = 15, and L = 20 iterations, respectively, and f, g and
h the Edwards et al., the Lawrence et al. and the Bilgili et al. BRDF
models. All images were rendered at 262144 samples/pixel using a path
tracing algorithm. Insets show a scaled color-coded difference between
the reference image and the rendered image for better comparison. For
higher disparity, the color-coded difference images are scaled by 5.
Below each image we also report the PSNR value
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Table 5 The storage
requirements for the BRDF
models compared in Fig. 11

BRDF model Blue-metallic-paint Yellow-matte-plastic Nickel

Measured 33.4 MB 33.4 MB 33.4 MB

Lawrence et al. 139.0 KB 331.9 KB 96.5 KB

Bilgili et al. 76.7 KB 73.2 KB 76.7 KB

Our 3D Model, L=10 87.1 KB 87.1 KB 87.1 KB

Our 3D Model, L=15 130.3 KB 130.3 KB 130.3 KB

Our 3D Model, L=20 173.5 KB 173.5 KB 173.5 KB

The L parameter of Bilgili et al. is 15, 15, 13 for blue-metallic-paint, nickel and yellow-matte plasticmaterials,
respectively

Table 6 The mean errors and
statistical related values of our
models and the naive model [4],
illustrated in Fig. 12, are shown
in numeric in this Table

Method Mean Variance Min Max

Bagher et al. (Naive model) −9.635750 0.681189 −11.509530 −7.829065

PDV-CPD3D L=5 −9.052952 0.225250 −10.153436 −7.883952

PDV-CPD3D L=15 −9.692110 0.377019 −11.469682 −8.071923

PDV-CPD3D L=20 −9.843168 0.390666 −11.487065 −8.131693

PDV-CPD3D L=25 −9.938137 0.418542 −11.600815 −8.146085
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Bagher et al.
PDV3d-CPD3d-iteration5
PDV3d-CPD3d-iteration15
PDV3d-CPD3d-iteration20
PDV3d-CPD3d-iteration25

Fig. 12 To compare the quality of our models against Bagher et al.
model, we show the error plots of our models with L = 5, 15, 20, 25
and the error ofBagher et al.’s naivemodel.Here it is sorted in ascending
order of the naive model errors, blue line

factored models compute probabilities on the fly and do not
rely on precomputed lookup tables for importance sampling,
but many previous BRDF representations (i.e., Bilgili et al.
[7] and Lawrence et al. [21]) rely on precomputed lookup
tables for importance sampling.

Figure 14 shows the importance sampling efficiency eval-
uated using the logarithmic MSE (mean squared error) from
a sphere rendered in a diffuse (constant) white environment.
The results show importance sampling efficiency of various
techniques, which are similar to the results demonstrated in
Fig. 13.

Limitations Our approach is dependent on the quantiza-
tion of the Dp vector. In the experiments presented here,
we computed the dp step length based on the average of
all materials in the MERL database. We have noticed that

this results in unsuitable quantization for some materials,
see special-walnut-224 in Fig. 10. This could be alleviated
by computing different nonlinear quantizations for different
material classes. Additionally, in order tomake a comparison
with Bagher et al. [4], we included all angles of the materials
in theMERLdatabase. Previous studies (e.g., Ngan et al. [28]
and Löw et al. [24]) have pointed out that the measured val-
ues in theMERL database are increasingly unreliable toward
grazing angles. It would therefore be interesting to evalu-
ate the accuracy of the models within a restricted range of
angles. Moreover, the Jacobian term used in the importance
sampling is an approximation to the exact solution due to
numerical instabilities. This could be improved by deriving
a better approximation.

6.1 Applications

This section shows examples of how the PDV factored mod-
els can be used for efficient measurement of isotropic BRDFs
and editing of measured BRDF through the individual PDV
factors.

BRDF reconstruction from factor measurements Using
the factored 2D model described in Eq. 3, it is possible to
capture a full isotropic BRDF bymeasuring the scaling of the
lobe described byG1(θr ) and the shape of the lobe described
by G2(dp) in a planar slice of the BRDF. In the illustra-
tion of the 2D PDV parameterization in Fig. 5l, this would
correspond to measure the 1D G2(dp) factor representing
the vertical direction and the 1D G1(θr ) factor representing
the horizontal direction in the 2D matrix. As illustrated in
Fig. 15 (left), the horizontal factor G1(θr ) can be measured
by moving a sensor and a calibrated light source in opposite

123



868 T. Tongbuasirilai et al.

Fig. 13 The Princeton scene rendered for visual comparisons of sam-
pling efficiency. a, b, c, and d were rendered using the Edwards et al.,
the Lawrence et al., the Bilgili et al., and our factored BRDF models,
respectively. All images were rendered at 256 samples/pixel by using

a path tracer with up to five global illumination bounces. The reported
MSE values are the log MSE values computed using low sampling ren-
dering (256 samples/pixel) and its reference

Table 7 The rendering time (in
seconds) for the renderings
shown in Fig. 11 and a number
of single-material spheres with
material from the MERL
database

BRDF model Blue-metallic-paint Yellow-matte-plastic Nickel Princeton

Edwards et al. 74.8 72.4 81.3 30.1

Lawrence et al. 75.0 69.2 62.5 27.7

Bilgili et al. 86.7 85.4 89.9 35.9

Our factored L=15 72.3 73.7 75.1 29.7

Our factored L=20 74.7 75.5 78.7 30.4

Our factored L=25 76.2 80.1 81.3 30.9

The Princeton scenes were rendered using 256 samples per pixel. Each single-material scene comprises a
sphere rendered using 1024 samples per pixel at a resolution of 256 by 256 pixels. All renderings and timings
were carried out using the same computer environment as described in Sect. 6

2x2 4x4 8x8 16x16 32x32 64x64
number of samples per pixel

-1

0

1

2

3

4

5

6

lo
g(

M
S

E
)

Edwards et al.
Bilgili et al.
Lawrence et al.
our

Fig. 14 TheMSE plots of Nickel BRDF in white constant environment
demonstrate the importance sampling efficiency of various methods

directionswith respect to the normal and capture the response
in the mirror direction. The shape of the lobe described by
G2(dp) can be measured by fixing the light source at a spe-

Fig. 15 The factors G1(θr ) and G2(dp) of our separable 2D model can
be captured

cific angle to the normal and move the sensor along the arc
as illustrated in Fig. 15 (right). Please note that the G2(dp)
factor needs to be normalized before it can be modulated
withG1(θr ) to form the full 2Dmatrix describing the BRDF.
Figure 16 shows the reconstruction errors (red plot) obtained
by simulating capture and reconstruction as described above
for all BRDFs in the MERL database, and as a reference the

123



Compact and intuitive data-driven BRDF models 869

gold
-m

et
all

ic-
pain

t3

sil
ve

r-m
et

all
ic-

pain
t2

blu
e-

m
et

all
ic-

pain
t2

sp
ec

ular
-w

hite
-p

hen
olic

tw
o-la

ye
r-g

old

hem
at

ite

tu
ngst

en
-c

ar
bid

e

bra
ss

ch
ro

m
e

alu
m

in
a-

oxid
e

gold
-m

et
all

ic-
pain

t2

sp
ec

ular
-o

ra
nge-

phen
olic

sp
ec

ular
-re

d-p
hen

olic

av
en

tu
rn

in
e

sp
ec

ular
-m

ar
oon-p

hen
olic

sil
ve

r-m
et

all
ic-

pain
t

sp
ec

ular
-g

re
en

-p
hen

olic

sp
ec

ular
-v

io
let

-p
hen

olic

tw
o-la

ye
r-s

ilv
er

m
ar

oon-p
las

tic

blu
e-

ac
ry

lic

gre
en

-m
et

all
ic-

pain
t2

gre
en

-p
las

tic

gre
en

-a
cr

yli
c

sp
ec

ular
-b

lu
e-

phen
olic

ss
44

0

sil
ico

n-n
itr

ad
e

re
d-s

pec
ular

-p
las

tic

gold
-m

et
all

ic-
pain

t

vio
let

-a
cr

yli
c

sp
ec

ular
-y

ell
ow-p

hen
olic

alu
m

in
iu

m

beig
e-

fa
bric

ye
llo

w-p
hen

olic

white
-fa

bric

white
-fa

bric
2

pin
k-

fa
bric

white
-m

ar
ble

pin
k-

jas
per

white
-a

cr
yli

c

re
d-p

hen
olic

st
ee

l

blu
e-

m
et

all
ic-

pain
t

polye
th

yle
ne

re
d-m

et
all

ic-
pain

t

alu
m

-b
ro

nze

nick
el

blac
k-

so
ft-

plas
tic

pin
k-

fe
lt

gra
y-

plas
tic

pin
k-

fa
bric

2

gre
en

-la
te

x

ch
ro

m
e-

st
ee

l

blu
e-

fa
bric

co
lo

r-c
han

gin
g-p

ain
t2

pick
led

-o
ak

-2
60

polyu
re

th
an

e-
fo

am

sil
ve

r-p
ain

t

re
d-fa

bric

co
lo

r-c
han

gin
g-p

ain
t1

pea
rl-

pain
t

sp
ec

ular
-b

lac
k-

phen
olic

re
d-fa

bric
2

gre
en

-fa
bric

gold
-p

ain
t
pvc

re
d-p

las
tic

dar
k-

blu
e-

pain
t

lig
ht-b

ro
wn-fa

bric

gre
en

-m
et

all
ic-

pain
t

nylo
n

blac
k-

phen
olic

vio
let

-ru
bber

pin
k-

plas
tic

nat
ura

l-2
09

ye
llo

w-m
at

te
-p

las
tic

ye
llo

w-p
las

tic

purp
le-

pain
t

ip
sw

ich
-p

in
e-

22
1

gre
as

e-
co

ve
re

d-s
te

el

co
lo

r-c
han

gin
g-p

ain
t3

te
flo

n

neo
pre

ne-
ru

bber

delr
in

ch
er

ry
-2

35

fru
itw

ood-2
41

sp
ec

ial
-w

aln
ut-2

24

ora
nge-

pain
t

white
-p

ain
t

pure
-ru

bber

co
lo

nial
-m

ap
le-

22
3

dar
k-

sp
ec

ular
-fa

bric

lig
ht-r

ed
-p

ain
t

white
-d

iff
use

-b
ball

blac
k-

oxid
ize

d-s
te

el

ye
llo

w-p
ain

t

dar
k-

re
d-p

ain
t

blu
e-

ru
bber

blac
k-

fa
bric

blac
k-

obsid
ian

Material

-10

-9.5

-9

-8.5

-8

-7.5

-7

-6.5
L

o
g

 R
el

at
iv

e 
R

M
S

PDV3d-CPD3d-iteration1
PDV3d-Reconstruction

Fig. 16 (red) The reconstruction error for all BRDFs in the MERL
database and (blue) as a reference the approximation error of the fac-
tored 3D model using L = 1 iteration

Fig. 17 Threematerials were rendered to compare between the original
BRDF data and its reconstruction

error introduced by direct representation using our factored
3D model with L = 1 iteration. To simulate the capture of
the G2(dp) factor, the light source was fixed at a 70◦ angle
to the normal. Figure 17 shows example renderings of three
reconstructed BRDFs.

Editing of measured BRDFs The single iteration (L = 1)
nonnegative factor models in 2D and 3D enable intuitive
editing. For example, in the 2D model described in Equa-
tion 3, G2(dp) can be edited to change the shape of the lobe,
and the G1(θr ) can be edited to change effects such as graz-

Fig. 18 The single iteration 2D model 1D factors G1 and G2 from the
left and middle columns are mixed to create new material appearances

ing angle behavior. Figure 18 shows a number of editing
examples demonstrating how the characteristics of different
measuredmaterials can bemixed to create a new appearance.
The images show how theG1(θr ) factor from thematerials in
the left column is combined with the G2(dp) factor describ-
ing the shape of the lobe of the BRDFs in the middle column
to create the mixed materials in the right column.

7 Conclusions and future work

This paper presented a study of three different BRDF param-
eterizations and proposed two new factored BRDF models
for 3D and 2D representations of isotropic BRDFs. The study
showed that the Half-Diff [39], Half-Out [21], and PDV [24]
parameterizations are all suitable for 2D representation of
isotropic BRDFs with only small approximation errors. It
also showed that the PDV parameterization structures the
data in a way suitable for factorization. The evaluation
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demonstrated that the new models are flexible in terms of
which parameterization is used and that they can repre-
sent measured BRDF with low numerical approximation
errors, and produce visually plausible renderings. For effi-
cient rendering, the paper also presented a new Monte Carlo
importance sampling scheme based on the factored models.

The evaluation and the results point toward a number
of interesting venues for future work. One interesting area
is to further study how the choice of parameter quanti-
zation affects the accuracy of the factorization. Another
important direction is to investigate how low-dimensional
factored models can be adapted for accurate representation
of anisotropic BRDFs. Finally, we will use the factored mod-
els to develop efficientBRDFcapture systems and investigate
how they can be incorporated in computer vision applications
where BRDFs are needed to be characterized in the wild.
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