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Abstract

In this paper we propose a new physically plausible, anisotropic
Bidirectional Reflectance Distribution Function (BRDF) for fitting
and for importance sampling in global illumination rendering. We
demonstrate that the new model is better in data fitting than existing
BRDF models. We also describe efficient schemes for sampling the
proposed anisotropic BRDF model. Furthermore, we test it on a
GPU-based real-time rendering algorithm and show that material
design can be done with this anisotropic BRDF model effectively.
We also show that the new model has effective real-time rendering
performance.

CR Categories: 1.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism—Color, shading, shadowing, and texture

Keywords: anisotropic, BRDF, global illumination

1 Introduction

Global illumination algorithms solve the rendering equation [Ka-
jiya 1986] (see Table 1 for notation):

Lo(l',wo) = Le(a:7w0)+

/ Li(z,w;) f(z,w;,wo)(w; - ng)dw;, (1)
Q4

where f(x,w;,wo) is the Bidirectional Reflectance Distribution
Function (BRDF) [Nicodemus et al. 1977]. In the rest of the pa-
per, we ignore the notation of the point in the BRDF.

Physically plausible BRDFs obey both Helmholtz reciprocity and
energy conservation laws. Reciprocity means that the incoming
and outgoing directions may be exchanged:

f(wi,WO) :f(w()awi)7 (2)

Energy conservation states that the total reflected power cannot ex-
ceed the incident power:

VW{),/ f(wl', W())(wl‘ : n)dwi <1 3)
Q4

Parameters of BRDFs can be obtained by fitting to measured data.
As real BRDFs are always reciprocal and energy conserving, accu-
rate fitting requires physically plausible BRDF models. In addition,
in Monte-Carlo rendering algorithms, BRDF models are best used
with their sampling formulas that result in random directions dis-
tributed proportionally to the cosine weighted BRDFs.

This paper proposes physically plausible, analytical BRDF models
with the aim of accurate data fitting, efficient importance sampling
and effective real-time rendering. The proposed models are based
on halfway vector representation and use the standard Beckmann
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distribution as a normalized microfacet distribution. We demon-
strate that they can represent both isotropic and anisotropic materi-
als more effectively than existing BRDF models. We also show that
Ward’s [Ward 1992] importance sampling formulas are good for
our proposed BRDF models and are more efficient than Lawrence
et al. [Lawrence et al. 2004] factorization method. Furthermore,
we demonstrate that our proposed BRDF models are applicable for
Monte Carlo rendering algorithms, and material tuning can be done
with a few parameters. Finally, we show that our new models not
only are well-suited for batch use, but they map well onto modern
GPUs with a performance advantage of around 20% over previous
methods.

2 Related Work

The first microfacet based BRDF model was proposed by Torrance
and Sparrow [Torrance and Sparrow 1967], which was improved
by Cook and Torrance [Cook and Torrance 1981]. Although these
microfacet based BRDF models are effective in modeling many real
materials, they cannot represent anisotropic materials, and do not
have efficient importance sampling formulas. Ward’s [Ward 1992]
and Duer’s [Duer 2005] BRDF models are simplifications of the
Cook-Torrance model. Their microfacet distribution functions are
not normalized and are not physically plausible. However, they can
represent both isotropic and anisotropic materials and have efficient
importance sampling formulas.

Neumann et al. [Neumann et al. 1999] analyzed energy con-
servation of the some analytic models, such as Phong [Phong
1975], Blinn-Phong [Blinn 1977], Cook-Torrance [Cook and Tor-
rance 1981], Ward [Ward 1992] models and they proposed a
normalization factor which can be seen as shadowing/masking
term to make these models energy conserving. Ashikhmin and
Shirley [Ashikhmin and Shirley 2000] proposed an anisotropic vari-
ation of the Phong [Phong 1975] reflection model, which was fur-
ther developed in [Ashikhmin and PremoZe 2007]. Ashikhmin et
al. [Ashikhmin et al. 2000] also introduced a general framework
for creating microfacet based BRDF models. We note that the
Ashikhmin-Shirley [Ashikhmin and Shirley 2000] microfacet dis-
tribution function is not strictly normalized (so this distribution is
not physically plausible), since they ignored the cos 6}, term when
calculating the integral in Equation 7. The correctly normalized
form of their microfacet distribution function can be found in [Pharr
and Humphreys 2004].

Edwards et al. [Edwards et al. 2006] use halfway vector disks for
BRDF modeling. Their model is energy conserving and has ef-
ficient sampling formulas but it is not physically plausible since
it is not reciprocal. Lawrence et al. [Lawrence et al. 2004] intro-
duced a new sampling method using nonnegative matrix factoriza-
tions (NMF) and demonstrated its effectiveness through comparing
to analytical BRDF models such as Lafortune et al. [Lafortune et al.
1997].

Ngan et al. [Ngan et al. 2005] experimentally examined analytical
BRDF models. Sun et al. [Sun et al. 2007], K¥ivanek and Col-
bert [Krivanek and Colbert 2008] recently demonstrated the possi-
bility of BRDF editing with analytical BRDF models. At the same
time, they introduced test beds for analytical BRDF models as well.



Symbol Meaning
Li(x,w;) | Incident radiance function
Lo(z,wo Outgoing radiance function
Lc(xz,wo) | Emitted radiance function
wj, Wo Unit-lenght incident and outgoing vectors
n Unit-lenght surface normal vector
h Unit-lenght halfway vector (w; + wo)/ || w; + wo ||
Q4 Unit hemisphere above the surface
q(h) Non-normalized microfacet distribution function
D(h) Normalized microfacet distribution function
F(wo -h) | Fresnel reflectance for incident angle between wo and h
f(wj,wo) | Bidirectional Reflectance Distribution Function (BRDF)
p(w; | wo) | Probability density function

Table 1: Notation used throughout this paper.

3 Microfacet Distribution Function

In our analytical anisotropic BRDF model, we use the follow-
ing normalized microfacet distribution function which is physically
plausible:
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For isotropic materials, m = m; = m,, thus we get the following
microfacet distribution:

1 _ tan? [
Dh) = —— m?2 6
(h) m?2 cos? 0, € ’ ©
which is the standard Beckmann distribution function [Cook and
Torrance 1981].

Our normalized microfacet distribution function obeys the follow-
ing equation

27 /2
/ / D(h) cos 0y, sin 0,dOrddp = 1. @)
0 0

This equation means that D(h) is a heighfield distribution, i.e. the
total projected area of all the microfacet faces should be equal to the
base area [Pharr and Humphreys 2004] (D (h) = 0 if cos 65, < 0).

4 Energy Conservation and Reciprocity

If a microfacet distribution function is described with the halfway

vector, then the BRDF model which uses it may satisfy the follow-
ing equation to fulfill energy conservation [Edwards et al. 2006]:
F(wo -h)D(h)

; < ——F 8
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Unfortunately, this upper bound does not obey reciprocity. Because
of that, as Neumann at al. [Neumann et al. 1999] proposed, we have
to make a slight modification:

F(wo -h)D(h)
4(wo - h) max {(w; - n), (wo - )}’

©)

f(wivwo) =

This equation produces a physically plausible BRDF model if the
microfacet distribution function is normalized. However, in the
course of our experimental analysis on measured BRDF data set,
we did not get impressive fitting results with these normalization
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Figure 1: (a) Albedo functions of the measured blue-metallic-paint,
nickel and yellow-matte-plastic. (b), (c) and (d) are renderings of
these materials.

factors. Thus, we rather propose to use following BRDF model in
data fitting:

F(wo - h)D(h)
4(wo - h)((w; - m)(wo - m))>’

To show why Equation 10 is better than Equation 9 for data fitting,
we first plot the albedo functions of measured BRDF data. The
albedo function depends on outgoing vector we and according to
the energy conservation law, its values should not be greater than 1
(Equation 3).

10)

flwj,wo) =

We selected three typical materials from Matusik et al. [Matusik
et al. 2003] data set for plotting albedo functions: blue-metallic-
paint, nickel, and yellow-matte-plastic. =~ While blue-metallic-
paint and nickel are semi-glossy and glossy materials, respec-
tively, yellow-matte-plastic is a specular material and its specular-
ity sharply increases near grazing angles (see Figure 1). Matusik et
al. [Matusik et al. 2003] data set contains measurement noise espe-
cially at the grazing angles [Edwards et al. 2006; Lawrence et al.
2004]. The plotted albedo functions are also in Figure 1. When the
outgoing angle increases, the albedo values of blue-metallic-paint
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Figure 2: Albedo functions of the proposed physically-plausible
BRDF model (see Equation 9) for different m values. Fresnel term
is chosen as fo = 1.0.
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Figure 3: Albedo functions of the proposed data fitting BRDF
model (see Equation 10) for different m and o values. If m and
« are correctly chosen, this model is physically plausible as well.
Fresnel term is chosen as fo = 1.0.

and nickel decreases, but yellow-matte-plastic behaves differently.
Its albedo values increase when the outgoing angle increases and
then sharply decreases.

Figure 2 shows the albedo functions of Equation 9 for different m
parameters. Note that when the outgoing angle increases, albedo
values decrease. With this behavior, diffuse, semi-glossy and glossy
materials such as blue-metallic-paint and nickel can be represented
well, but this formulation is not suitable for representing specular
and highly specular materials such as yellow-matte-plastic. On the
other hand, if we plot the albedo functions of Equation 10 for dif-
ferent m and o parameters, we get the plots of Figure 3 that can
mimic many kinds of data. If « is set near to 0, diffuse, semi-glossy
and glossy materials such as blue-metallic-paint and nickel can be
represented well. Furthermore, if « is given a bigger value, specu-
lar and highly specular materials such as yellow-matte-plastic can
be defined. If o equals to 0, this representation is exactly physi-
cally plausible for all m parameters. On the other hand, if « is not
equal to 0, the combination of model parameter values determines
the physical plausibility (see Figure 3).

5 The New Anisotropic BRDF Model and Its
Fitting
A general BRDF model consists of diffuse and specular terms. We

develop three different versions of our new anisotropic model. The
simple version is the sum of a pure Lambertian term and a single

specular lobe:

ka ks F(wo - h)D(h)
m  4(wo -h)((w; - m)(wo - m))*

1)

f(wivw()) =

where kg is the diffuse albedo of the material, k5 is specular reflec-
tivity and F'(wo - h) is the Fresnel function of the material, which
can be cheaply approximated by Schlick’s [Schlick 1994] formula:

F(wo -h) = fo+ (1= fo)(1 = (wo - h))”. (12)

Based on the observation that the diffuse reflection is due to non-
direct photon collisions, the diffuse and specular parts can be cou-
pled using the Fresnel function describing ideal mirror reflections:

kd(l — F((.«Jo . h)) +
k:sl;r(wg -h)D(h)
4(wo - h)((w; - m)(wo - m))*

flwj,wo) =

(13)

Finally, we also consider the multiple-specular lobe version of the
proposed model. Using more than one specular lobe, we can rep-
resent the surface roughness on multiple scales, which reduces the
fitting error. We also use different Fresnel terms for each specu-
lar lobe, which reduces the fitting error as well. In this way, we
can model mixture materials like a car paint. The multiple-specular
lobe model is:

flwjwo) = —+

ko1 Fy(wo - h) Dy (h)
Z 4(wo .i,)l((wi.n)(wlo n))er (14)

5.1 Fitting the Simple Model

We fitted the proposed simple model to 100 isotropic and 4
anisotropic materials taken from [Matusik et al. 2003], using
Ngan’s [Ngan et al. 2003] fitting procedure and the L? error metric.
First, we assumed a single specular lobe.

In our analytical BRDF model, k4 and k; are the diffuse and spec-
ular reflectivities and are linear parameters. On the other hand,
fo, ma, my and « are specular lobe parameters and are non-linear
parameters. To produce plausible results, we should include con-
straints 0 < fo < 1,m, > 0,my > 0and a > 0 in the parameter
estimation procedure based on MATLAB FMINCON function.

Brushed aluminum, yellow satin, purple satin and red velvet are
four anisotropic materials. Although Ngan et al. [Ngan et al. 2005]
underlined that only brushed aluminum and yellow satin are suit-
able for analytic modeling, we wanted to see the ability of data fit-
ting performance of our analytical BRDF model even for these ma-
terials. In Table 2, there are estimated parameters of our model. In
Figure 4, renderings of these materials using our anisotropic model
can be seen.

We also choose six analytical anisotropic BRDF models for
comparing to our model: Ashikhmin-Shirley (A&S) [Ashikhmin
and Shirley 2000], Ashikhmin-PremoZe (A&P) [Ashikhmin and
Premoze 2007], Edwards et al. [Edwards et al. 2006], Lafor-
tune et al. [Lafortune et al. 1997], Ward [Ward 1992], and Ward-
Duer [Duer 2005]. We applied the same fitting procedure to esti-
mate model parameters of these models. Table 3 summarizes the
L? errors of these models. In Figure 5, we represent brushed alu-
minum with some of these anisotropic analytical BRDF models. As



Material kar kdg kap ksr ksg ks f() My My « L?

Brushed alum. | 0.0036 | 0.0034 | 0.0026 | 0.0115 | 0.0105 | 0.0075 | 0.999 | 0.035 | 0.129 | 0.005 | 0.0104
Purple satin 0.0026 | 0.0004 | 0.0011 | 0.1404 | 0.0522 | 0.0711 | 0.055 | 0.339 | 1.256 0 0.0006
Red velvet 0.0048 | 0.0005 0 0.1938 | 0.0333 | 0.0267 | 0.041 | 2.337 | 2.644 0 0.0003
Yellow satin 0.0066 | 0.0022 | 0.0004 | 0.0542 | 0.0345 | 0.0131 | 0.207 | 0.129 | 1.084 | 0.197 | 0.0014

Table 2: Estimated parameters of our Anisotropic analytical BRDF model on four anisotropic materials which are from Matusik et al. data

set.
Material A&S A&P | Edwards | Lafortune | Ward | Ward-Duer | Our Anisotropic
Brushed aluminum | 0.0122 | 0.0106 | 0.0101 0.0133 0.0104 0.0123 0.0104
Purple satin 0.0006 | 0.0006 | 0.0007 0.0008 0.0008 0.0007 0.0006
Red velvet 0.0004 | 0.0004 | 0.0004 0.0004 0.0004 0.0004 0.0003
Yellow satin 0.0013 | 0.0015 | 0.0017 0.0025 0.0022 0.0020 0.0014

Table 3: The L? errors of seven analytical anisotropic models to four anisotropic data which are from Matusik et al. data set.
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Figure 4: (a) Brushed aluminum, (b) Purple satin, (c¢) Red velvet
and (d) Yellow satin are reconstructed using our Anisotropic BRDF
model. For the model parameters and L? errors, see Table 2.

it can be seen, our anisotropic BRDF model has better approxima-
tion capability than others.

In addition, we choose six analytic isotropic BRDF models for
comparing to the isotropic case of our BRDF model: Ashikhmin-
Shirley [Ashikhmin and Shirley 2000], Blinn-Phong [Blinn 1977],
Cook-Torrance [Cook and Torrance 1981], Lafortune et al. [Lafor-
tune et al. 1997], Ward [Ward 1992] and Ward-Duer [Duer 2005].
We selected 30 materials from Matusik’s data set randomly and ap-
plied the same fitting procedure to estimate model parameters of
these models. In Figure 6, there are the logarithmic L? errors of
these models. Our BRDF model gives the lowest errors on 25 ma-
terials of these 30 materials. Consequently, its approximation capa-
bility is effective for isotropic materials as well.

In Figure 7, the polar plots in the incidence plane for four mod-
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Figure 5: Brushed aluminum is reconstructed using (a) the
Ashikhmin-Shirley, (b) the Ashikhmin-PremoZe, (c) the Edwards et
al., (d) the Ward, (e) the Ward-Duer and (f) our Anisotropic BRDF
model. For the model parameters and L* errors, see Table 2 and
Table 3, respectively.

els are shown. Ashikhmin-Shirley [Ashikhmin and Shirley 2000],
Cook-Torrance [Cook and Torrance 1981] and Ward [Ward 1992]
models have 1/ max{(w; - n), (wo -n)},1/((w; - n)(wo - n)) and

1/4/(w; -m), (wo - M) terms, respectively, and they act as shad-

owing/masking terms. However, they are not optimized for one
material and do not vary from material to material. Our proposed
anisotropic BRDF model optimizes this shadowing/masking term
with an additional o parameter. In this way, it more closely matches
the measured BRDF data than existing BRDF models.

5.2 Multiple Specular Lobes

We choose six analytical BRDF models: Ashikhmin-
Shirley [Ashikhmin and Shirley 2000], Blinn-Phong [Blinn
1977], Cook-Torrance [Cook and Torrance 1981], Ward [Ward
1992], Ward-Duer [Duer 2005] and our proposed model. We
fitted them to randomly selected 30 materials form Matusik’s data
set, and used the two specular lobe versions of each model. In
Figure 8, there are the logarithmic L? errors of these models.
Our BRDF model gives the lowest errors on 28 materials out of
30 materials. Although the addition of specular lobes decreases
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Figure 7: Polar plots of various fitted models against the measured BRDF (black dashed lines) of ”dark-specular-fabric” in the incidence
plane. Cubic root applied for visualization purpose. The Ashikhmin-Shirley L? error is 0.0042, the Cook-Torrance L? error is 0.0036, the
Ward L* error is 0.0132 and our Anisotropic model L* error is 0.0027 for this material.
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Figure 6: L? errors (logarithmic scale) of seven analytic models
to 30 isotropic BRDF data which are from Matusik et al. data set.
The BRDF's are sorted in the errors of the Lafortune model (Black)
for visualization purpose. One specular lobe is used for all models.

the errors and increases the visual quality, its effectiveness varies
from model to model. In these 30 materials, one extra specular
lobe reduces the error by 4.00% in the Blinn-Phong model, 7.00%
in the Ward model, 11.41% in the Ward-Duer model, 20.72%
in the Ashikhmin-Shirley model, 21.42% in the Cook-Torrance
model and by 27.62% in our proposed model. Consequently, its
approximation capability is even more effective when it is used
with multiple lobes.

Moreover, we choose six BRDF representations for visually com-
paring to the isotropic case of our BRDF model: Ashikhmin-
Shirley [Ashikhmin and Shirley 2000], Cook-Torrance [Cook and
Torrance 1981], Edwards et al. [Edwards et al. 2006], Lawrence et
al. [Lawrence et al. 2004], Ward [Ward 1992] and Ward-Duer [Duer
2005]. We selected three materials (blue-metallic-paint, nickel and
yellow-matte-plastic) from Matusik’s data set and applied the same
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Figure 8: L? errors (logarithmic scale) of six analytic models to
30 isotropic BRDF data which are from Matusik et al. data set.
The BRDFs are sorted in the errors of the Ward-Duer model (Ma-
genta) for visualization purpose. Two specular lobes are used for
all models.

fitting procedure to estimate model parameters of the analytical
models. To increase fitting quality, we used three specular lobes
for the analytical models. We used the same scene configuration for
rendering as Edwards et al. [Edwards et al. 2006] used in their work.
Figure 9 shows renderings of the Princeton scene [Edwards et al.
2006]. The table was rendered with the approximation of measured
nickel in this scene. Since the viewer looks at the table from graz-
ing angles, it is distinctive for approximation capability. We also
calculated the PSNR (Peak Signal-to-Noise Ratio) values for each
color channel and obtained their averages [Richardson 2002]. The
PSNR values and difference images between the reference image
and rendered images are also presented in Figure 9. Results indi-
cate that our proposed BRDF model most closely matches the mea-
sured BRDF data. Furthermore, while our proposed BRDF model
requires only few parameters to represent materials, Lawrence et
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Figure 9: Visual comparisons of well-known BRDF representations on the Princeton scene. (a) Reference image was rendered using mea-
sured BRDF data. (b), (c), (d), (e), (f), (g), (h) were rendered using the Ashikhmin-Shirley, the Cook-Torrance, the Edwards et al., the
Lawrence et al. factored BRDF;, the Ward, the Ward-Duer and our Anisotropic BRDF model, respectively. While (a), (b), (c), (d), (f), (g) and
(h) were rendered at 262144 samples/pixel, (e) was rendered at 4096 samples/pixel. Insets show a difference between the reference image and
the rendered image and darker portions in these difference images mean higher disparity. Below each image we also report (PSNR value).
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(Error=8865.00) (Error=11719.46) (Error=25287.49)
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(Brror=8051.00)  (Error=10302.48)  (Error=24950.82)

Figure 10: (a) Specular blue, (b) Green-blue flip-flop, (c) Silver
metallic are reconstructed using the Cook-Torrance BRDF model.
(d) Specular blue, (e) Green-blue flip-flop, (f) Silver metallic are re-
constructed using our Anisotropic BRDF model. Below each image
we also report (Error value).

al. [Lawrence et al. 2004] required 176KB, 120KB and 384KB for
representing blue-metallic-paint, nickel and yellow-matte-plastic,
respectively.

Furthermore, we fitted isotropic case of our model to another BRDF
data set which was measured by Rump et al. [Rump et al. 2008].
This data set includes three metallic car paints: specular blue,
green-blue flip-flop and silver metallic. When we fitted analytical
models to this data set, we used Rump et al.’s [Rump et al. 2008] fit-
ting procedure and error metric. As can be seen from Figure 10, our
model represents metallic car paints better than the Cook-Torrance
BRDF model.

6 Importance Sampling

In Monte Carlo rendering algorithms the outgoing radiance is ob-
tained as:

#samples

1 f(wj, wo) (wj - m)

Lo(wo) A —————— Li(w;) 0200 )
(wo) #samples z_; (wi) p(w; | wo)

(15)

In above equation, probability density function p(w; | wo) should
mimic f(w;,wo)(w; - n) for efficient importance sampling.

Let &1 and &2 be two canonical uniform random variables in the
range 0 < & < 1,0 < &2 < 1. Importance sampling equations for
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(a) Edwards sampling (b) Lawrence sampling (c) Ward-Duer sampling (d) Our Anisotropic sampling
64 samples/pixel 64 samples/pixel 64 samples/pixel 64 samples/pixel

(e) Edwards sampling (f) Lawrence sampling (g) Ward-Duer sampling (h) Our Anisotropic sampling
4096 samples/pixel 4096 samples/pixel 4096 samples/pixel 4096 samples/pixel

Figure 11: The Princeton scene with global illumination was rendered using a path tracing algorithm for visual comparison of sampling
efficiency. Paths up to five bounces long were included. While (a), (b), (c) and (d) were rendered using the Edwards et al., the Lawrence et
al., the Ward-Duer and our Anisotropic model at 64 samples/pixel, respectively, (e), (f), (g) and (h) were rendered using the Edwards et al.,
the Lawrence et al., the Ward-Duer and our Anisotropic model at 4096 samples/pixel, respectively. The bottom rows show closeups of the
highlighted regions.

our anisotropic BRDF model are: Probability density function p(w; | woe) for our anisotropic BRDF
model is:
B —log(&1) . = 1 h 20
9h = arctan ( W s (16) p(wl | wO) 47memy cos3 eh (wo ) h) Q( )7 ( )
m2, m

m ! where ¢(h) is from Equation 4. For the derivation of sampling for-

¢n = arctan (m—y tan(27r§2)). 17 mulas, see Walter’s [Walter 2005] notes.

T

The ratio of the product of the BRDF and cosine of the orienta-
tion angle and the sampling density (see Equation 15) will be the
weight of the sample. For our anisotropic BRDF model, weighting
function is the following:

With the help of Equation 16 and Equation 17, we can calculate the
halfway vector h:

h = [sin 6}, cos ¢p, sin O}, sin ¢, cos Oy]. (18) |  ksF(wo - h)(w; - n)i—® on
w(wl wo) = cos eh(wo 3 n)a .

After that, we can find the sampling direction w; with the following
formula: Actually, the sampling procedure of the our anisotropic model is
w; =2(wo -h)h — wp. (19) the same as that of the Ward’s [Ward 1992] model. However, our
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Figure 12: Various objects rendered with isotropic version of our
analytic BRDF model. For all scenes, m = m, = my, =
0.001, fo = 0.5, = 0.25,kq = [0,0,0], ks = [1.0, 1.0, 1.0].

(a) mz = 0.05,my =0.1

(b) mz = 0.1, my = 0.05

Figure 13: A sphere rendered with anisotropic version of our an-
alytic BRDF model. For both scenes, kq = [0.15,0.15,0.15],
ks =[0.85,0.85,0.85), fo = 0.75 and o = 0.2.

weighting function is different, which makes our model have dif-
ferent importance sampling efficiency. If our model did not contain
the Fresnel term, the importance sampling efficiency would be bet-
ter than that of Ward’s [Ward 1992] BRDF model.

Furthermore, we compared sampling efficiency of our anisotropic
model to Edwards et al. [Edwards et al. 2006] sampling method,
Lawrence et al. [Lawrence et al. 2004] factorization method, and
Ward-Duer [Duer 2005] sampling method. We used the same scene
configuration as in Figure 9. Visual comparison of sampling qual-
ity is shown in Figure 11. Figure 11 also includes closeup views
of some important regions, such as the teapot handle. As Figure 11
demonstrates, we obtain better sampling efficiency than Lawrence
et al. [Lawrence et al. 2004] factored representation. As a conse-
quence of this, our anisotropic BRDF model can be used both for
representing and importance sampling the BRDFs.

7 Real-Time Rendering Implementation

We tested and compared our anisotropic analytical model in a GPU-
based real-time rendering algorithm [Krivanek and Colbert 2008].
In real-time rendering implementation, we used Fresnel blended
version of the our BRDF model (see Equation 13). As we men-
tioned before, when m, = m,, our BRDF model is used to rep-
resent isotropic materials (see Equation 6). In Figures 12 and 13,
the isotropic and anisotropic cases of our BRDF model can be seen,
respectively.

Moreover, the rendering frame rates for varying environment maps
are shown in Figure 14. Although Figure 14 does not contain FPS
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Figure 14: Plot of the real-time rendering performance with re-
spect to the number of frame per second (FPS) for a given environ-
ments when rendering a sphere at a resolution of 550 x 550. The
40 samples were used during rendering.

Kitchen {3}

Pisa (B)

Lafortune Ward
Blinn-Fhong  Ward-Dugr
ALP

ic Lobe

blue | = 0150

FPS

Athena (3) 11.3681

Figure 15: Material design can be done with analytical BRDF
models on the fly. This is true for our proposed Anisotropic model
as well.

values for the Blinn-Phong model, we found average of 34.575 FPS
for it. As can be seen from Figure 14, our anisotropic BRDF model
has effective real-time rendering performance. These results were
produced on a consumer-level PC with Intel Pentium 4 3.00GHz
processor, 2GB RAM and a Nvidia GeForce 6600 GT 256MB
graphics card.

Finally, material design can be done with our anisotropic model
interactively (see Figure 15).

8 Conclusions and Future Work

In this work, we have provided a comprehensive review of an-
alytical BRDF models and proposed new physically plausible



anisotropic BRDF models. Our proposed models are based on
halfway vectors, have normalized microfacet distribution function,
have efficient importance sampling procedure and efficient perfor-
mance in both data fitting and real-time rendering. We also tested
them in a real-time rendering algorithm and have shown that mate-
rial editing can be done dynamically.

As a future work, we would like to use our physically plausible
models in Bidirectional Scattering Distribution Function (BSDF)
which equals to sum of BRDF and Bidirectional Transmittance Dis-
tribution Function (BTDF).
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