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Abstract

High-quality Monte Carlo image synthesis needs to use realistic bidirectional reflectance distribution
functions (BRDFs) based on acquired reflectance data. In this study, we propose a novel model that
contributes to solving memory problems and measurement noise problems of BRDFs. The model is a
composite associative memory model constructed by integration of Kohonen’s Self Organizing Feature Map
(SOM), Mass Attraction Network (MAN), and it has been tested on data set acquired by Matusik et al..
Because it is based on table-lookups, it can’t be categorized in analytical reflectance models. We show that
our approach has acceptable compactness. We also show that it has more accuracy than both analytical
BRDF models and Lawrence et al.’s table-based model. In this work, we are able to create images efficiently
under global illumination with less memory requirements.

Keywords: SOM; MAN; BRDF representation; Reflection model; Table-based model.

1. Introduction

To be able to produce photo-realistic images in computer graphics, the interactions between light and
surface must be described well. In this paper, we focus on Bidirectional Reflectance Distribution Functions
(BRDFs) [1], which characterizes this process.

When we look at the BRDF history, we are able to see that a lot of analytical BRDF models have been
introduced over the past 35 years. These models can be divided into two categories; empirical
(phenomenological) analytical BRDF models [2, 3, 4, 5, 6, 7, 8, 9] and physically-based analytical BRDF
models [10, 11, 12, 13, 14].

Both the empirical and the physically-based analytical BRDF models are only approximations of reflectance
of real materials. Many of these models are based on material parameters that in principle could be
measured, but in practice are difficult to acquire [15].

Alternative to directly measuring model parameters is to acquire actual samples from BRDFs using some
version of a gonioreflectometer [16, 17, 18, 4, 19, 20, 15] and then fit the measured data to a selected
analytical model using various optimization techniques [4, 7, 21] [15]. So, the physical derivation of a
physically-based BRDF model serves primarily to inspire greater confidence, and is not necessarily a
practical advantage when it comes to fitting measured data [4].



There are several problems in model fitting when a BRDF is represented by an analytical function [15].
First, BRDF represented by the analytical function with the computed parameters is only an approximation
of real reflectance; measured values of the BRDF are usually not exactly equal to the values of the analytical
model [15]. Another major problem is that depending on the number of lobes used in modeling the BRDF,
the corresponding number of parameters to be estimated usually is large. For example, when Lafortune et
al. [7] model is chosen to fit for an anisotropic material, there would be at least 4 and 8 non-linear
parameters should be estimated for two-lobe (1 diffuse lobe + 1 specular lobe) and three-lobe (1 diffuse lobe
+ 2 specular lobes) representations respectively. As Lawrence et al. [22] noted, fitting a three-lobe
Lafortune et al. model can be unstable, often taking minutes to hours to converge in a non-linear minimizer,
and can require manual tuning to find a good fit. Nygan et al. [21] found that in practice, fitting with
four-lobe (1 diffuse lobe + 3 specular lobes) is very unstable, and hence they omitted results from the
four-lobe Lafortune et al. model.

In non-linear estimation, optimization results also closely depend on the choice of initial values and a global
minimum usually is not guaranteed. However, computational cost become high when large data set is used.
Another problem involved in the fitting process is that the choice of the objective function for optimization
is not clear. Some researchers also applied logarithmic or cubic root transformations on BRDFs before
starting fitting [21, 23]. The pure least squares method assumes that the variances at sample points are the
same. It is a common experience that for the BRDF data, the variances are not homogeneous and some
weighting functions have been proposed to stabilize the corresponding variances [7, 21].

Unfortunately, real BRDF data have long been hard to acquire and measurements are often limited in
angular resolution. Realism of both empirical and physically-based analytical models increases, if angular
resolution is high. So, for efficient measure-and-fit approach, densely acquired data is very important but
finding such data is very hard.

Another method for BRDF modeling is to create a model and use dense set of measurements directly in the
rendering process. For example, Matusik et al. [15]’s data-driven approach and Lawrence et al. [22]’s
importance sampling method have been developed for this purpose. These approaches preserve those
subtleties of the measured data that are lost in a data-fitting approach and these approaches have the
advantage that the produced BRDFs look very realistic since they are based on the measured BRDFs [15].
But Matusik et al. [15]’s data-driven model has a disadvantage that each BRDF is stored separately as a
tabulated data structure which requires about 17 MB of memory. Using hundreds or thousands of materials
in the same scene would be impossible because of memory requirements [23].

In this paper, we introduce a novel model based on Matusik et al.’s measured BRDFs. When we analyze this
data set, we see that some parts of measured BRDFs are never used in the rendering process, and also
different index values return the same BRDFs or almost the same BRDFs. So, we aimed to eliminate these
BRDFs without losing the realism (see Fig. 1). To be able to do that, we use our composite model of neural
networks: Kohonen’s Self Organizing Feature Map (SOM) and Mass Attraction Network (MAN).



Fig. 1 - Monte Carlo renderings of a buddha with “metallic-blue” BRDF under global
illumination. These images were generated according to three table-based BRDF
representations. From left to right:  Reference image rendered using Matusik et al.’s
measured data, using Lawrence et al.’s factored BRDF (PSNR = 44.53), and using our
representation with 256 clusters and 50 epochs (PSNR = 52.52). Insets show a difference
between Matusik et al.’s representation and the rendered images. As you can see, our
proposed representation is more accurate than Lawrence et al.’s representation.

Because of its neural network nature, our model behaves as a brain such that it remembers (stores) most
useful BRDFs meanwhile forgetting the BRDFs which are not used. So, it reduces the memory
requirements. Proposed approach also regularizes some minor measurement noise. Our model is as
realistic as original measured BRDFs, and it requires smaller memory area than original measured BRDFs.
Since the proposed method inherits from Matusik et al.’s measured data set, it carries all of the properties
Matusik et al.’s measured BRDFs have. So, our model is for isotropic materials.
The next section gives a review of previous work. In Section 3, and 4 the table-based approach based on
integration of Kohonen’s Self Organizing Feature Map (SOM), Mass Attraction Network (MAN) are
explained respectively. Some empirical results are presented in Section 5. Section 6 is devoted for
conclusions and future work.

2. Previous Work

The most well known and one of the oldest reflectance model developed to simulate the effects of the
specular reflection is the Phong model [2]. For specular surfaces, this model assumes that the incoming
light tends to bounce off in the reflection direction. For the fast computation purposes, [3] developed a
model based on the Phong model, but this model uses halfway direction instead of reflection direction. So,
Phong model is based on (V.R) lobe, but Blinn variation of Phong model and the most microfacet based
models are based on (N.H) lobe. Nygan et al. [21] have shown that the (N.H) representation is a more
accurate way to model specular reflections. However, both models are empirical, mathematically simple
and this mathematical simplicity has been made them become very popular.

Fresnel effect and micro geometry of a surface are important factors in BRDF modeling. Considering the
fact that a surface can be modeled by using small and flat surfaces (microfacets) with random angle and
size, Torrance and Sparrow [10], Cook and Torrance [11] and Ashikhmin et al. [8] have presented more
sophisticated models. Torrance-Sparrow and Cook-Torrance models are physically-based models and they
are based on V-cavity, though Ashikhmin et al. is an empirical model. These models account for masking



and self-shadowing effects and predict off-specular reflection. A comprehensive but computationally
expensive model based on physical theory was developed by He et al. [13]. Oren and Nayar [14] presented a
non-Lambertian diffuse model to simulate rough and diffuse surfaces such as sand and plaster. This model
is based on Lambertian diffuse microfacets and exhibits backscattering phenomena. For anisotropic
surfaces, Poulin and Fournier [12] introduced a reflection and refraction model. Their model assumes that a
surface consists of microscopic cylinders. All of three previous models are physically-based models.

On the other hand, empirical models which do not necessarily reflect the physical mechanism of the light
material interaction have been developed to capture the reflectance effects. Ward [4] developed a model
that, while not strictly physically based, was capable of describing most significant reflection phenomena
[15]. His model obeys the most basic of physical laws (reciprocity and energy conversation) and it is
relatively simple over the most of the analytical reflectance models. This model is also for both isotropic and
anisotropic reflections. Duer variation of the Ward model [9] and the Ward model are almost same, but
Duer variation of the Ward model [9] has a different normalization factor from Ward model. Schröder and
Sweldens [5] represented reflectance functions using spherical wavelets. Koenderink et al. [6] used Zernike
polynomials for representing BRDFs. Lafortune et al. [7] introduced an empirical model which can capture
important phenomena such as off-specular reflection, increasing reflectance and retro-reflection, and this
model is also based on (V.R) lobe.

The potential benefit of using measurements of BRDFs has also gained recent attention [4, 24, 19, 25, 20].
The measurements of Matusik et al. [15] provide a dense (90 x 90 x 180 for values) sampling of many
isotropic BRDFs. The main drawback of these representations is their size, since they typically represent
the full 3D isotropic BRDFs in tabular form. In Matusik [23]’s thesis, he also describes one approach for
sampling these measured BRDFs, but this representation requires as much storage as the original BRDFs,
making it difficult to use for scenes containing many materials [22].

In an effort to reduce the size of measured BRDFs while maintaining an accurate representation of their
effects, several researchers have investigated techniques for factoring these large datasets into more
compact, manageable form [26, 27, 28]. In all cases the 4D BRDF is factored into products of 2-dimensional
functions that can be represented as texture maps and used to shade a model in real-time. However, in
most cases these factorizations allow only a single term approximation. More important, there are no
techniques for importance sampling these representations [22]. On the other hand, Lawrence et al. [22]
have developed a model based on factorization of BRDF data which is convenient for importance sampling,
but this representation is not as accurate as original measured BRDF data (see Fig. 1).

When we look at the BRDF history from neural networks side, we see that Gargan and Neelamkavil [29]
have presented a model which uses neural networks for approximating reflectance functions. They used
standard backpropagation networks with two or three weight layers, and it is a non-linear model. Their
neural network structure is used during rendering. However, for reducing the size of measured BRDFs with
using a neural network structure only in data preparation phase, neural networks have never been used.

3. Proposed Architecture



As you see from Fig. 2, although some index values are never used by the model, they are still stored.
Because a different coordinate system and exponential mapping of half angle which are used by the
representation make some index values become unused. It is also observed that some neighboring index
values are same or too close to each other. Our motivation is eliminating these not used index values and
representing same/closer BRDFs in a single cluster.

Our proposed composite associative memory model architecture has three sub layers, namely, input layer,
cluster layer (SOM), and storage layer (MAN). The overall system architecture is shown in Fig. 3. Input
layer has three neurons whose main responsibility are to accept index vector (1 458 000 values) which is
got from Matusik et al.’s representation and to interact with SOM sub layer. The SOM sub layer classifies
the input index vector into one of M possible clusters. The operation is a many-to-one mapping which
involves mapping a set of 2N possible index combinations to one of M available combinations.



Fig. 2 - Index histogram of Matusik et al.’s representation according to the natural
coordinate system.

Kohonen SOM imitates the topological and physical structure of the brain. These models are also called as
topology preserving maps where the geometrical arrangements of competitive output units are very
important. Assuming that the output units are placed on a plane, the two cluster centers get closer and
closer as the corresponding input vectors get more and more similar.

The distance between two units is typically calculated as the square of the Euclidean distance (L2). The
weight vector for a cluster unit serves as an exemplar of the input patterns associated with that cluster.
During the self organization process, the cluster unit whose weight vector matches the input pattern most
closely is chosen as the winner. The winning unit and its neighboring units, which are topologically located
near this unit, update their weights. For a through review of SOM the reader is referred to [31, 32].

SOM is an excellent unsupervised classifier although it suffers from the local minimum problem as in many
competitive approaches. The index cluster centers determined by SOM will be topologically meaningful
(close indexes will be represented by neighboring neurons), but SOM will also produce index exemplars
(false indexes) which did not actually appear in the input vector space.

To eliminate these false indexes generated through SOM learning process, we have added another layer to
the system. This layer –MAN- is responsible for obtaining and keeping the true indexes from the original
index vector space. They are replaced with the false index clusters formed over SOM sub layer at the final
step of learning.

Mass Attraction Network (MAN) is a neural network architecture proposed as an associative memory,
inspired from Newton's mass attraction theory [33, 34]. The model has a similar structure with Hamming
Net, where the incoming patterns are stored on the connection weights. It has been reported to be superior
to Hamming combination in that it finds the winner at a single iteration, whereas Hamming Net requires
Maxnet which iterates a number of times to get the winning neuron [33, 35, 36].



Fig. 3 - Overall system architecture for M=256

4. Learning

The learning in the system is achieved using a combination of SOM and MAN learning algorithms. This
learning is done through three phases. These phases are explained in the following sections.

4.1. Phase1: Training SOM

Training starts by introducing index vector (1 458 000 values from Matusik et al.’s BRDF data) into the
input layer of the architecture seen in Fig. 3. The input vector is classified into one of the M possible SOM
cluster centers and best matching one is found using the Eq. (1).

In Eq. (1), “I” is a function determines the index of the cluster center having minimum Euclidian distance
between input vector and cluster weight vector. “x” is input vector of index values which have unique r, g,
and b BRDF values. “c” denotes clusters itself. “cJ” is weight vector components of the i.th cluster carries
not used (false) indexes during training. “p” denotes an index from the original index vector. “Φ” is the
index of the winner.

After winning cluster is found, the cluster center weight vector is going to be updated by the Eq. (2).



In the Eq. (2), winner clusters are updated according to the SOM learning rule based on gradient descent.
The definitions of the symbols are the same as in Eq. (1). “α” is the learning coefficient used for stimulating
the learning speed. As can be seen from Eq. (2), the winner cluster weights are updated so that false index
vector is created on the weights of SOM.
During the training, these false indexes are continuously replaced by new false indexes. This process is
completed by limited number of iterations (epochs). Although the indexes are adjusted for being best
representative of the input indexes during the training, they are false and the resultant index spectrum is
going to be different from the original. This means that the index reduced form of the original index vector
is composed by non-existing LUT (look up table) entries.

4.2. Phase2: Adaptive Learning with True Indexes

Because of the learning strategy, false indexes are located on the weights of the SOM. In order not to miss
the original index values, another mechanism is used: MAN [33]. MAN, stores the original index vector
found efficiently near to the cluster center. Efficiency is constituted by the storage usage on the MAN
network. This is the new approach used in proposed work for MAN.

Every cluster center stores “k” neighbor index vector which is stored as closer pattern to the cluster. This
allows us to decide whether the input pattern is worth to be stored or not. This is working as if the brain
forgets the unused information and replaces with recently obtained valuable data.

A candidate ignorable neighbor of the “k” neighbors of the cluster center on MAN sub layer is found by just
calculating the distance between winner cluster center weight vector and its stored “k” vectors. The new
input vector is exchanged by winner cluster center having farthest distance from cluster center.

Finding candidate ignorable neighbor is done through the formula shown in Eq. (3).

The Eq. (3) presents the index “Ψ” of the ignorable neighbor. “s” symbolizes stored vector of the winner
cluster. “k” is the number of stored vector which is three in our case.

After the farthest candidate ignorable neighbor found, it is checked with the input vector. This checking is
necessary to prove that candidate ignorable neighbor is worth to be replaced by input vector through the
Eq. (4).

In the Eq. (4), “z” is the elementary factor to conclude the replacement decision. If the input vector is closer
to the cluster than the candidate ignorable neighbor, “z” concludes replacement should be done. If the



input vector is not closer to the cluster center as compared with ignorable neighbor, replacement is
canceled. “z” is defined in Eq. (5). In Eq. (5), distance between ignorable neighbor and cluster center by
input vector and cluster center is compared.

After replacement is determined, the weight vector of the winning cluster center is updated adaptively. In
other words, the learning of the SOM is continuing. This is done through the weight update in Eq. (6).

The learning coefficient has been changed at each epoch convenient to the adaptive learning rate as given in
Eq. (7)

4.3. Phase3: LUT&Index Reduced Image construction

After all cluster centers are constructed with its stored vector (which are called as neighbors in this work),
LUT is going to be constructed and then new index reduced data can be created.

For this purpose, all clusters weights are compared with related stored neighbor vectors. Only the stored
vectors having minimum Euclidean distance are taken into LUT table. The other neighbors are ignored. As
a result, “M” cluster centers build new LUT with “M” entries that can also be found in old LUT.

The last operation is querying the input vector. All indexes are queried through our composite associative
memory model. The model gives the new LUT correspondence for input vector.

5. Results

We now present our table-based data representation, describing the accuracy and the compactness of our
representation. In our implementation, there are two important factors which have very important impacts
on results; final number of clusters and number of epochs of our algorithm. In original Matusik et al. [15]’s
BRDF data, size of index vector is 1 458 000 which must be stored with corresponding three BRDFs. This
number can be thought as final number of clusters in our model. In our implementation, this number can
be changed according to the visual quality. Number of epochs is another important factor in our
implementation. During our investigation, we got accurate results more than 10 epochs. Selecting the
number of clusters for our implementation is a manual process. In most cases, general appearance for



measured BRDFs provides enough information for an accurate estimate of how many numbers of clusters
are sufficient and optimal. One example scene is shown in Fig. 4 with spheres rendered under environment
map. As you see from Fig. 4, numbers of epochs and especially numbers of clusters have very important
roles in our representation. In some cases, our representation may have weak highlight compared to
original BRDF. In such a case, number of clusters might be increased for getting the same quality specular
highlight. In Fig. 4, we also represented the difference images and the Peak Signal-to-Noise Ratios (PSNR).

Fig. 4 - Representations of measured “yellow-matte-plastic” BRDF with different cases,
and the difference images. Left to right: Reference image rendered using Matusik et al.’s
measured BRDF representation, using our representation with M=64 clusters and 10
epochs (required data size is 5.56 MB, PSNR = 41.19), using our representation with M=64
clusters and 50 epochs (required data size is 5.56 MB, PSNR = 41.19), using our
representation with M=64 clusters and 30 epochs (required data size is 5.56 MB, PSNR =
41.19), using our representation with M=1000 clusters and 30 epochs (required data size is
5.58 MB, PSNR= 44.60).

Fig. 5 - Fitting the measured “metallic-blue” BRDF with the eight analytical models,
Matusik et al.’s measured BRDF representation and our representation. Clockwise from
upper left: Reference image rendered using Matusik et al.’s measured BRDF
representation, using Torrance-Sparrow (PSNR = 33.63), using Phong (PSNR = 32.09),
using Blinn-Phong (PSNR = 30.97), using Cook-Torrance (PSNR = 32.98), using Ward-Duer
(PSNR = 32.86), using Ashikhmin-Shirley (PSNR = 36.09), using Lafortune (PSNR = 34.12),
using Ward (PSNR = 33.99), using Our representation (PSNR = 52.12).

We also would like to show realism and accuracy of our implementation. We sampled BRDFs from Matusik
et al.’s BRDF representation. During sampling BRDFs, we used rendered scene for this purpose and we got
samples from rendered sphere. Then we fitted these BRDFs which are about 1 500 000 for each color



channel to analytical isotropic models. We chose eight analytical isotropic models for our analysis:
Torrance-Sparrow [10], Phong [2], Blinn-Phong [3], Cook-Torrance [11], Ward [4], Lafortune et al. [7],
Ashikhmin-Shirley [37], and Ward-Duer [9]. In our fitting process, we used the same way, as [21] have
done. So, we used two-lobe version of each model (1 diffuse lobe + 1 specular lobe), and we enforced diffuse
contribution to Lambertian effect.

We used the same objective function, and the same non-linear fitting technique which name is Sequential
Quadratic Programming (SQP). This technique has an advantage over other non-linear fitting techniques
such as Levenberg-Marquardt. With SQP, user can put some constraints on non-linear parameters easily.
We saw that these constraints increase fitting performance, since program searches global minimum where
it should search. During fitting process, we tried to find best fit parameters for each model. So, we repeated
fitting process with different initial values until we found the lowest error for each material.

One example fit, to “metallic-blue” is shown in Fig. 5 with spheres rendered under an environment map. In
Fig. 5, we also represented PSNR values for rendered images. Relative quality of the fits from the different
models for this material is typical of the Matusik et al.’s data set [15]. As you see from Fig. 5, our novel
model and Matusik et al.’s measured BRDFs representation are more realistic than all of the analytical
reflectance models. Because the analytical reflectance models aren’t based on real BRDFs data during
rendering and their returned BRDFs aren’t exactly equal to the values of the measured BRDFs. The Phong,
Blinn-Phong, Ward-Duer, and Ward images are all noticeably different from original data. The highlights
near the center of the sphere are significantly brighter than original, and near grazing angle the highlights
are much less pronounced. The reason for that is none of them have Fresnel effect. Of the four models,
Ward-Duer has the strongest highlight near grazing angle, but it is still noticeably dimmer than measured
data. The images from the Ashikhmin-Shirley, Cook-Torrance and Torrance-Sparrow fits are very similar to
each other and are mostly faithful to the direct rendering. The Lafortune fit shows an abrupt increase in
intensity near grazing angle; however values closer to normal incidence are too low [21]. But our
representation exactly matches the Matusik et al.’s measured BRDFs, and in all cases our table-based
approach produces an accurate result, in many cases significantly more accurate than fitting an analytical
BRDF model.

However, our implementation regularizes some minor errors which occur during BRDF measurement
phase. (Matusik et al. observe errors, such as deviation from reciprocity, of 10-15% at normal angles,
ranging to 60-70% at grazing angles [22]). We conclude that, for measured data, our representation
appears to produce results comparable with measurement error.

Since both our representation and Matusik et al.’s measured BRDFs are generative representations, we
would like to show their performance under fitting analytical models. So, we generated BRDFs from both of
them, and we fitted these data to eight analytical models, namely; Torrance-Sparrow [10], Blinn-Phong [3],
Cook-Torrance [11], Ward [4], Oren-Nayar [14], Lafortune et al. [7], Ashikhmin-Shirley [37], and Ward-Duer
[9]. In this process, we generated BRDFs which are about 1 500 000 for each color channel from rendered
sphere. In our fitting process, we used the same way, as [21] have done. So, we used two-lobe version of
each model (1 diffuse lobe + 1 specular lobe), and we enforced diffuse contribution to Lambertian effect, and
we used the same metric which is L2 metric, but for Oren-Nayar model, we used its approximation formula
which is described in [14], and we used only this approximation formula (just 1 lobe) for fitting this model.
For our representation, we used 1000 clusters version of our approach. Table 1 show these results for four
materials of Matusik et al.’s dataset; “purple-paint”, “green-metallic-paint”, “yellow-matte-plastic”, and
“fabric-beige”. Results show that generated BRDFs of our representation are more proper for analytical
models in almost all cases. Because our neural network architecture eliminates BRDFs which don’t
represent actual shape of BRDF lobe.



Table 1 - Fitting performance of our representation and Matusik et al.’s representation
under analytical models. In this table, metric is L2 metric. We generate BRDF data from
both our representation and Matusik et al.’s representation, and we fit these data to eight
analytical models. We list resulting errors for four BRDF data: “purple-paint”, “green-
metallic-paint”, “yellow-matte-plastic”, “fabric-beige” 

Fig. 6 is an extension of Table 1. In Fig. 6, we generated BRDFs from both our representation and Matusik et
al.’s measured BRDFs representation and we fitted these BRDFs with multi-lobe Cook-Torrance [11] and
Ashikhmin-Shirley [37] models. We used the same procedure as we have done in Table 1, but this time, we
used three-lobe version of analytic models (1 diffuse lobe + 2 specular lobes). There are two reasons for
this; first, when we increment specular lobe number, realism of analytical models increases. Second,
difference between fitting an analytical model to generated BRDFs which are from our representation and
fitting an analytical model to generated BRDFs which are from Matusik et al.’s measured BRDFs
representation becomes more distinctive. In this figure, we used “green-metallic-paint” BRDF. As you see
from Fig. 6, BRDFs generated from our representation is more proper for analytical models, and our
representation is more realistic than fitting an analytical model, although it contains multi-lobe.

Fig. 6 - Green-Metallic-Paint: upper row left to right; Rendered using Matusik et al.’s
BRDF representation, using Cook-Torrance 3-lobe fitting to BRDFs which are generated by
Matusik et al.’s representation (its L2 error is 0.009277),  using Ashikhmin-Shirley 3-lobe
fitting to BRDFs which are generated by Matusik et al.’s representation (its L2 error is
0.011025), lower row left to right; Rendered using our representation with 1000 clusters,
using Cook-Torrance 3-lobe fitting to BRDFs which are generated by our representation
(its L2 error is 0.009264), using Ashikhmin-Shirley 3-lobe fitting to BRDFs which are
generated by our representation (its L2 error is 0.011005).

Table 2 lists comparisons of rendering times of BRDF models for two materials of Matusik et al.’s dataset;



“metallic-blue”, and “yellow-matte-plastic”. In this table, we used nine BRDF representations and we used
both two-lobe (1 diffuse lobe + 1 specular lobe) and three-lobe (1 diffuse lobe + 2 specular lobes) cases of
some analytical models. For parameters of analytical models, we used the same fitting procedure as we
have done previously. For Lawrence et al. [22]’s model, we got material parameters from their paper’s
website. For all of the analytical models and Lawrence et al.’s model, rendering time vary according to their
parameters. So, their rendering time varies from material to material. However, for both our representation
and Matusik et al.’s representation rendering times are constant for that scene and sample numbers which
are used in Monte Carlo renderings and it doesn’t vary from material to material. In Table 2, we calculated
rendering time ratios. In other words, we first calculated rendering times of BRDF models, and then, we
divided these values with rendering time of our representation. We did that because of two reasons. First,
these ratios are platform independent. Second, with these ratios, trade-off between our representation and
other BRDF models can be seen easily. Our representation’s rendering time is always less than Matusik et
al.’s representation, because our representation requires less memory. In some situations, rendering time
difference between our representation and three-lobe analytical BRDF model representation can be
ignorable.

Table 2 - Comparisons of Monte Carlo rendering times of BRDF models. In these
comparisons, we used the same scene which is the same as our previous figures and the
scenes were generated with a path tracer that selected 1024 reflected rays per pixel
according to each model separately. This table lists rendering times of BRDF models
which are divided by rendering time of our representation for two BRDF data: “metallic-
blue”, and “yellow-matte-plastic” 

For the BRDFs presented in this paper, we used about 30 MB binary data for Matusik et al.’s representation
for each material. However, we used about 5.6 MB binary data for our representation. This shows that our
representation is more compact than Matusik et al.’s approach. So, with our representation, scenes which
have hundreds or thousands materials are able to be rendered, but with Matusik et al.’s representation, this
can't happen.

Binary data of our implementation also has low entropy. Although our approach minimizes redundancy,
this low entropy occurs because our approach has to cover full BRDF space. We get about 100 KB data,
when we compress our binary data which is about 5.6 MB. This compression can be done during rendering,
so materials can be rendered with this memory requirement. On the other hand, we get about 14 MB data,
when we compress binary data of Matusik et al.’s representation which is about 30 MB.

The other BRDF representation which may be seen as competitive with our representation is Lawrence et
al. [22]’s factored representation (see Fig. 1, and Fig. 7). This model is based on factorization of BRDF and it
aims to do efficient importance sampling. This model requires about 200 KB data during rendering, and in
compressed case this value becomes about 50 KB. In compressed case, difference between memory
requirement of our representation and memory requirement of this representation can be ignorable. This
model has an advantage over our representation; it is for both isotropic and anisotropic case, but our



representation is only for isotropic case. This model is more accurate than analytical models, but it is less
accurate than our representation. On the other hand, this model doesn’t enforce reciprocity, and this
situation isn’t theoretically desirable, but our representation is reciprocal.

Fig. 7 compares the accuracy of three BRDF representations; Ward [4] BRDF model, Lawrence et al. [22]’s
factored BRDF model, and our BRDF representation. We got the scene description from Dave et al. [38]. So,
we used Matusik et al.’s three measured data; “nickel”, “yellow-matte-plastic”, and “metallic-blue” in this
scene. For our representation, we used sampling technique of Blinn-Phong [3] BRDF model. We used 1000
clusters for our model’s “nickel” and “yellow-matte-plastic” representations, and 256 clusters for our
model’s “blue-metallic-paint” representation. For Ward BRDF model, we fitted 3 lobes version (1 diffuse
lobe + 2 specular lobes) to get lowest errors for that model. As you see from Fig. 7, our representation has
higher accuracy than both analytical models and Lawrence et al.’s table-based model.

Fig. 7 - Reference image for the Princeton scene rendered using Matusik et al.’s measured
data (#samples = 16384). Top right: Using Ward’s analytical BRDF model (1 diffuse lobe +
2 specular lobes versions) (#samples = 16384). Bottom left: Using Lawrence et al.’s
factored BRDF (#samples = 4096). Bottom right: Using our representation (#samples =
16384). Insets show a difference between the reference image and rendered image. The
scene is based on the same image from [38].

Gargan and Neelamkavils’ [29] neural network solution for approximating reflectance functions uses neural
networks in different way comparing to our representation. They train their neural network architecture
with BRDF data, and get network weights as this training result. They also use different coordinate space
which is XY parameter space or projected hemispherical space. During rendering, their model uses this
parameter space, a scaling constant, and network weights to compute resulting radiance.

On the other hand, our neural network architecture is used during data preparation phase. So, our neural
network architecture is independent from rendering. In our representation, Rusinkiewicz [30]’s coordinate



frame is used, and this frame is known to be better than other frames.

6. Conclusions and future work

This work addresses solving storage problems of Matusik et al. [15]’s measured BRDFs data representation.
For our representation to be implemented, first Matusik et al.’s measured BRDFs representation must be
understood well. Then its index vector (and its corresponding BRDFs) which size is 1 458 000 is used in our
algorithm as an input vector. So, our representation is built on Matusik et al.’s measured BRDFs data.

Our representation is more compact than Matusik et al.’s representation. It requires at least 5 times less
memory. At compressed case, it requires 140 times less memory than Matusik et al.’s representation. It is
very realistic and more accurate than both analytical BRDF models and Lawrence et al. [22]’s factored
BRDF model.

Our representation also regularizes some minor measurement noise. In other words, our representation
decreases variance. Its neural network architecture discards BRDFs which don’t represent actual shape of
BRDF well.

On algorithmic side, the representation is efficient and easy to use in both local and global illumination
algorithms. In Monte Carlo algorithms, reflection directions for a given incident direction can be sampled
according to the [23]. In Matusik thesis, he represented an important sampling method for his
representation, and this importance sampling method can be used for our representation. In this work, we
used the sampling of Blinn-Phong [3] BRDF model for our representation.

As future work, we will look into details of more efficient and more compact importance sampling algorithm
for our representation. We will also look into details of representing other BRDF representations with less
memory requirements.
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