Representing BRDF by Wavelet Transformation of Pair-Copula Constructions

Ahmet Bilgili¹ Aydın Öztürk² Murat Kurt¹

¹International Computer Institute Ege University ahmetbilgili@gmail.com, murat.kurt@ege.edu.tr

²Department of Computer Engineering Yaşar University aydin.ozturk@yasar.edu.tr

28th Spring Conference on Computer Graphics, 2012

Bilgili, Öztürk, and Kurt Representing BRDF by Wavelet Transformation of Pair-Copulas

(4月) (1日) (日)

Representing BRDF by Wavelet Transformation of Pair-Copulas Introduction

Table of Contents

- Introduction
 - Definitions of BRDFs
 - Properties of Proposed BRDF Representation
 - Our Proposed BRDF Representation
- 2 Previous Works
- 3 Copula Distributions
 - Pair-Copula Constructions
- BRDF Representation Using Pair-Copula Constructions
 - MIT MERL BRDF Dataset
 - Our BRDF Representation
 - Some Empirical Results
- 5 Our Estimation Procedure
- Importance Sampling
- 7 Results
- 8 Conclusions and Future Work
- Questions
- D Thank You
 - References

・ 同 ト ・ ヨ ト ・ ヨ

Introduction

• Modeling the surface reflectance of light is an important issue in computer graphics.

22

Bilgili, Öztürk, and Kurt

Representing BRDF by Wavelet Transformation of Pair-Copulas

Introduction

- Modeling the surface reflectance of light is an important issue in computer graphics.
- Expressing the surface reflectance by a mathematical model has been studied extensively.

Representing BRDF by Wavelet Transformation of Pair-Copulas

Introduction

- Modeling the surface reflectance of light is an important issue in computer graphics.
- Expressing the surface reflectance by a mathematical model has been studied extensively.
- BRDFs are commonly used as mathematical models to describe the surface reflectance.

Bilgili, Öztürk, and Kurt

Representing BRDF by Wavelet Transformation of Pair-Copulas

• BRDF was first formulated by Nicodemus et al. [12] as

$$\rho(\vec{\omega}_i, \vec{\omega}_o) = \frac{dL_o(\vec{\omega}_o)}{L_i(\vec{\omega}_i)\cos\theta_i d\vec{\omega}_i},\tag{1}$$

where $\rho(\vec{\omega}_i, \vec{\omega}_o)$ is the BRDF, L_i and L_o are the incident and reflected radiance, respectively, $(\vec{\omega}_i, \vec{\omega}_o) = \{(\theta_i, \phi_i), (\theta_o, \phi_o)\}$ are the corresponding incoming and outgoing vectors, $d\vec{\omega}_i$ is the differential solid angle in the ω_i direction.

Table of Contents

- Introduction
 - Definitions of BRDFs
 - Properties of Proposed BRDF Representation
 - Our Proposed BRDF Representation
- 2 Previous Works
- 3 Copula Distributions
 - Pair-Copula Constructions
- BRDF Representation Using Pair-Copula Constructions
 - MIT MERL BRDF Dataset
 - Our BRDF Representation
 - Some Empirical Results
- 5 Our Estimation Procedure
- Importance Sampling
- 7 Results
- 8 Conclusions and Future Work
- Questions
- D Thank You
 - References

・ 同 ト ・ ヨ ト ・ ヨ

Representing BRDF by Wavelet Transformation of Pair-Copulas Introduction

Definitions of BRDFs

<ロト <問 > < 注 > < 注 >

• The BRDF defined in Equation 1 is a four-dimensional (4D) function.

▲御▶ ▲理▶ ▲理≯

- The BRDF defined in Equation 1 is a four-dimensional (4D) function.
- If the reflection surface is assumed to be isotropic such as plastic, nickel, etc. then the corresponding BRDF can be expressed by a three-dimensional (3D) function.

同 ト イ ヨ ト イ ヨ ト

- The BRDF defined in Equation 1 is a four-dimensional (4D) function.
- If the reflection surface is assumed to be isotropic such as plastic, nickel, etc. then the corresponding BRDF can be expressed by a three-dimensional (3D) function.
- On the other hand, anisotropic surfaces such as velvet, brushed metal, etc. are represented by a 4D BRDF.

- The BRDF defined in Equation 1 is a four-dimensional (4D) function.
- If the reflection surface is assumed to be isotropic such as plastic, nickel, etc. then the corresponding BRDF can be expressed by a three-dimensional (3D) function.
- On the other hand, anisotropic surfaces such as velvet, brushed metal, etc. are represented by a 4D BRDF.

Bilgili, Öztürk, and Kurt Representing BRDF by Wavelet Transformation of Pair-Copulas

Representing BRDF by Wavelet Transformation of Pair-Copulas Introduction

Table of Contents

- Introduction
 - Definitions of BRDFs
 - Properties of Proposed BRDF Representation
 - Our Proposed BRDF Representation
- 2 Previous Works
- 3 Copula Distributions
 - Pair-Copula Constructions
- BRDF Representation Using Pair-Copula Constructions
 - MIT MERL BRDF Dataset
 - Our BRDF Representation
 - Some Empirical Results
- 5 Our Estimation Procedure
- Importance Sampling
- 7 Results
- 8 Conclusions and Future Work
- Questions
- D Thank You
 - References

・ 同 ト ・ ヨ ト ・ ヨ

- A physically correct BRDF representation must satisfy reciprocity, energy conservation, and non-negativity properties of BRDF [6].
- Reciprocity property is expressed as

$$\rho(\vec{\omega}_i, \vec{\omega}_o) = \rho(\vec{\omega}_o, \vec{\omega}_i). \tag{2}$$

- A physically correct BRDF representation must satisfy reciprocity, energy conservation, and non-negativity properties of BRDF [6].
- Reciprocity property is expressed as

$$\rho(\vec{\omega}_i, \vec{\omega}_o) = \rho(\vec{\omega}_o, \vec{\omega}_i). \tag{2}$$

• Since our proposed model is based on the parametrization by Rusinkiewicz [16], we enforce our system with the following translation to ensure reciprocity property

$$\phi_d = \phi_d + \pi,\tag{3}$$

where ϕ_d is azimuth angle of the difference vector described in Rusinkiewicz [16] system.

- A physically correct BRDF representation must satisfy reciprocity, energy conservation, and non-negativity properties of BRDF [6].
- Reciprocity property is expressed as

$$\rho(\vec{\omega}_i, \vec{\omega}_o) = \rho(\vec{\omega}_o, \vec{\omega}_i). \tag{2}$$

• Since our proposed model is based on the parametrization by Rusinkiewicz [16], we enforce our system with the following translation to ensure reciprocity property

$$\phi_d = \phi_d + \pi,\tag{3}$$

・ 同 ト ・ ヨ ト ・ ヨ ト

where ϕ_d is azimuth angle of the difference vector described in Rusinkiewicz [16] system.

 Therefore the proposed model is a visually plausible representation, XXX since it only satisfies the reciprocity and non-negativity properties.

Representing BRDF by Wavelet Transformation of Pair-Copulas Introduction

Table of Contents

- Introduction
 - Definitions of BRDFs
 - Properties of Proposed BRDF Representation
 - Our Proposed BRDF Representation
 - Previous Works
- 3 Copula Distributions
 - Pair-Copula Constructions
- BRDF Representation Using Pair-Copula Constructions
 - MIT MERL BRDF Dataset
 - Our BRDF Representation
 - Some Empirical Results
- 5 Our Estimation Procedure
- Importance Sampling
- 7 Results
- 8 Conclusions and Future Work
- Questions
- Thank You
 - References

▲□ ▶ ▲ □ ▶ ▲ □

• In this paper, we adopted Aas et al.'s [1] technique to represent the BRDF.

30.00

- In this paper, we adopted Aas et al.'s [1] technique to represent the BRDF.
- Furthermore, we used wavelet transforms proposed by Genest et al. [7] to compress the pair-copula distributions.

- In this paper, we adopted Aas et al.'s [1] technique to represent the BRDF.
- Furthermore, we used wavelet transforms proposed by Genest et al. [7] to compress the pair-copula distributions.
- Our empirical results showed that the pair-copula constructions and wavelet transforms provided satisfactory approximations for the measured BRDF data.

- In this paper, we adopted Aas et al.'s [1] technique to represent the BRDF.
- Furthermore, we used wavelet transforms proposed by Genest et al. [7] to compress the pair-copula distributions.
- Our empirical results showed that the pair-copula constructions and wavelet transforms provided satisfactory approximations for the measured BRDF data.

- In this paper, we adopted Aas et al.'s [1] technique to represent the BRDF.
- Furthermore, we used wavelet transforms proposed by Genest et al. [7] to compress the pair-copula distributions.
- Our empirical results showed that the pair-copula constructions and wavelet transforms provided satisfactory approximations for the measured BRDF data.

Table of Contents

- Introduction
 - Definitions of BRDFs
 - Properties of Proposed BRDF Representation
 - Our Proposed BRDF Representation
- Previous Works
- Copula Distributions
 - Pair-Copula Constructions
- BRDF Representation Using Pair-Copula Constructions
 - MIT MERL BRDF Dataset
 - Our BRDF Representation
 - Some Empirical Results
- 5 Our Estimation Procedure
- Importance Sampling
- 7 Results
- 8 Conclusions and Future Work
- Questions
- D Thank You
 - References

・ 同 ト ・ ヨ ト ・ ヨ

 When a photon hits the surface of a material, it scatters from surface to a direction with a random distribution [2]. Considering certain probabilistic features of the underlying process, various models have been proposed to represent this random reflection:

Bilgili, Öztürk, and Kurt Representing BRDF by Wavelet Transformation of Pair-Copulas

- When a photon hits the surface of a material, it scatters from surface to a direction with a random distribution [2]. Considering certain probabilistic features of the underlying process, various models have been proposed to represent this random reflection:
 - Ward [17] employed the Gaussian distribution to model BRDFs.

- When a photon hits the surface of a material, it scatters from surface to a direction with a random distribution [2]. Considering certain probabilistic features of the underlying process, various models have been proposed to represent this random reflection:
 - Ward [17] employed the Gaussian distribution to model BRDFs.
 - Assuming that a material surface consists of microfacets, Cook and Torrance [4] modeled the orientation of these microfacets using Beckmann distribution. Among the other factors, they included this univariate distribution in their BRDF model.

- When a photon hits the surface of a material, it scatters from surface to a direction with a random distribution [2]. Considering certain probabilistic features of the underlying process, various models have been proposed to represent this random reflection:
 - Ward [17] employed the Gaussian distribution to model BRDFs.
 - Assuming that a material surface consists of microfacets, Cook and Torrance [4] modeled the orientation of these microfacets using Beckmann distribution. Among the other factors, they included this univariate distribution in their BRDF model.
 - Edwards et al. [6] modeled the BRDF in terms of a bivariate probability distribution.

- When a photon hits the surface of a material, it scatters from surface to a direction with a random distribution [2]. Considering certain probabilistic features of the underlying process, various models have been proposed to represent this random reflection:
 - Ward [17] employed the Gaussian distribution to model BRDFs.
 - Assuming that a material surface consists of microfacets, Cook and Torrance [4] modeled the orientation of these microfacets using Beckmann distribution. Among the other factors, they included this univariate distribution in their BRDF model.
 - Edwards et al. [6] modeled the BRDF in terms of a bivariate probability distribution.
 - Öztürk et al. [13] have modeled BRDF data using Archimedean copula distributions.

Table of Contents

- Introduction
 - Definitions of BRDFs
 - Properties of Proposed BRDF Representation
 - Our Proposed BRDF Representation
 - Previous Works

3 Copula Distributions

- Pair-Copula Constructions
- BRDF Representation Using Pair-Copula Constructions
 - MIT MERL BRDF Dataset
 - Our BRDF Representation
 - Some Empirical Results
- 5 Our Estimation Procedure
- Importance Sampling
- 7 Results
- 8 Conclusions and Future Work
- Questions
- D Thank You
 - References

・ 同 ト ・ ヨ ト ・ ヨ

Representing BRDF by Wavelet Transformation of Pair-Copulas Pair-Copula Constructions

Copula Distributions

• A copula distribution is a multivariate distribution with uniformly distributed U(0,1) marginals.

/□ ▶ < 글 ▶ < 글

Copula Distributions

- A copula distribution is a multivariate distribution with uniformly distributed U(0,1) marginals.
- Joint density function f is given as:

$$f(x_1, x_2, ..., x_n) = c_{1 \cdots n} \{F_1(x_1), F_2(x_2), ..., F_n(x_n)\} \prod_{i=1}^n f_i(x_i),$$
(4)

where $c_{1...n}$ is the copula pdf and $f_i(x_i)$, i = 1, 2, ..., n are the marginal densities of joint pdf [7].

| 4 同 1 4 三 1 4 三 1

Table of Contents

- Introduction
 - Definitions of BRDFs
 - Properties of Proposed BRDF Representation
 - Our Proposed BRDF Representation
- Previous Works
- 3 Copula Distributions
 - Pair-Copula Constructions
- 4 BRDF Representation Using Pair-Copula Constructions
 - MIT MERL BRDF Dataset
 - Our BRDF Representation
 - Some Empirical Results
- 5 Our Estimation Procedure
- Importance Sampling
- 7 Results
- 8 Conclusions and Future Work
- Questions
- D Thank You
 - References

・ 同 ト ・ ヨ ト ・ ヨ
• It is shown that BRDF can be factorized using a cascade of simple building blocks called pair-copulae [1].

→ 3 → < 3</p>

A 10

- It is shown that BRDF can be factorized using a cascade of simple building blocks called pair-copulae [1].
- An advantage of expressing distributions in terms of pair-copulae is that some of the pairs can be ignored to simplify the underlying representation.

.

- It is shown that BRDF can be factorized using a cascade of simple building blocks called pair-copulae [1].
- An advantage of expressing distributions in terms of pair-copulae is that some of the pairs can be ignored to simplify the underlying representation.
- For example, if a 3D pdf f with random variables X_1, X_2 and X_3 is given, and X_1, X_3 are independent given that X_2 , then $c_{13|2}{F(x_1|x_2), F(x_3|x_2)} = 1.$

伺 ト イヨト イヨト

- It is shown that BRDF can be factorized using a cascade of simple building blocks called pair-copulae [1].
- An advantage of expressing distributions in terms of pair-copulae is that some of the pairs can be ignored to simplify the underlying representation.
- For example, if a 3D pdf f with random variables X_1, X_2 and X_3 is given, and X_1, X_3 are independent given that X_2 , then $c_{13|2}{F(x_1|x_2), F(x_3|x_2)} = 1.$
- Thus, the joint pdf can be expressed as:

$$f(x_1, x_2, x_3) = c_{12}\{F_1(x_1), F_2(x_2)\}c_{23}\{F_2(x_2), F_3(x_3)\}\prod_{i=1}^{3} f_i(x_i).$$
(5)
where $u_i = F_i(x_i), i = 1, 2, ..., n$ are the marginal distributions of joint distribution F [10].

Table of Contents

- Introduction
 - Definitions of BRDFs
 - Properties of Proposed BRDF Representation
 - Our Proposed BRDF Representation
- 2 Previous Works
- 3 Copula Distributions
 - Pair-Copula Constructions
- BRDF Representation Using Pair-Copula Constructions
 - MIT MERL BRDF Dataset
 - Our BRDF Representation
 - Some Empirical Results
- 5 Our Estimation Procedure
- Importance Sampling
- 7 Results
- 8 Conclusions and Future Work
- Questions
- D Thank You
 - References

Table of Contents

- Introduction
 - Definitions of BRDFs
 - Properties of Proposed BRDF Representation
 - Our Proposed BRDF Representation
- 2 Previous Works
- 3 Copula Distributions
 - Pair-Copula Constructions
- BRDF Representation Using Pair-Copula Constructions
 - MIT MERL BRDF Dataset
 - Our BRDF Representation
 - Some Empirical Results
- 5 Our Estimation Procedure
- Importance Sampling
- 7 Results
- 8 Conclusions and Future Work
- Questions
- D Thank You
 - References

 In this work isotropic measured BRDF data of Matusik et al. [9] is modeled using pair-copulae and wavelet decompositions.

- In this work isotropic measured BRDF data of Matusik et al. [9] is modeled using pair-copulae and wavelet decompositions.
- The measured data is parameterized using the Rusinkiewicz [16] coordinate system.

- In this work isotropic measured BRDF data of Matusik et al. [9] is modeled using pair-copulae and wavelet decompositions.
- The measured data is parameterized using the Rusinkiewicz [16] coordinate system.
- The Rusinkiewicz parameterization depends on $\theta_h, \phi_h, \theta_d$ and ϕ_d . It is well-known that isotropic BRDF values are independent of ϕ_h .

- In this work isotropic measured BRDF data of Matusik et al. [9] is modeled using pair-copulae and wavelet decompositions.
- The measured data is parameterized using the Rusinkiewicz [16] coordinate system.
- The Rusinkiewicz parameterization depends on $\theta_h, \phi_h, \theta_d$ and ϕ_d . It is well-known that isotropic BRDF values are independent of ϕ_h .
- Therefore, the measured BRDF data of Matusik et al. [9] is sampled at 90, 90, 180 resolutions for θ_h , θ_d and ϕ_d , respectively giving total of $90 \times 90 \times 180 = 1.458.000$ samples per color channel (Red-Green-Blue).

Representing BRDF by Wavelet Transformation of Pair-Copulas

Table of Contents

- Introduction
 - Definitions of BRDFs
 - Properties of Proposed BRDF Representation
 - Our Proposed BRDF Representation
- 2 Previous Works
- 3 Copula Distributions
 - Pair-Copula Constructions
- BRDF Representation Using Pair-Copula Constructions
 - MIT MERL BRDF Dataset

• Our BRDF Representation

- Some Empirical Results
- 5 Our Estimation Procedure
- Importance Sampling
- 7 Results
- 8 Conclusions and Future Work
- Questions
- D Thank You
 - References

Our BRDF Representation

Since we assume that the BRDF ρ(*ω*_i, *ω*_o) can be viewed as a multivariate pdf, then a simple normalization transformation is made.

/□ ▶ < 글 ▶ < 글

Our BRDF Representation

- Since we assume that the BRDF ρ(*ω*_i, *ω*_o) can be viewed as a multivariate pdf, then a simple normalization transformation is made.
- The scaled BRDF *b_{ijk}* is evaluated with the following expression:

$$b_{ijk} = \frac{b_{ijk}^*}{K},\tag{6}$$

where b_{ijk}^* is the measured BRDF, and $\mathcal{K} = \delta_{\theta_h} \delta_{\theta_d} \delta_{\phi_d} \sum_{i=1}^n \sum_{j=1}^m \sum_{k=1}^r b_{ijk}^*$ is the scaling factor.

伺 ト イヨト イヨト

Our BRDF Representation

- Since we assume that the BRDF ρ(*ω*_i, *ω*_o) can be viewed as a multivariate pdf, then a simple normalization transformation is made.
- The scaled BRDF *b_{ijk}* is evaluated with the following expression:

$$b_{ijk} = \frac{b_{ijk}^*}{K},\tag{6}$$

where b_{ijk}^* is the measured BRDF, and $\mathcal{K} = \delta_{\theta_h} \delta_{\theta_d} \delta_{\phi_d} \sum_{i=1}^n \sum_{j=1}^m \sum_{k=1}^r b_{ijk}^*$ is the scaling factor. • After the scaling transformation, the normalized BRDF, b_{ijk} can be modeled in terms of pair-copulae as:

$$b_{ijk} = f_{\theta_h}(\theta_h^i) f_{\theta_d}(\theta_d^j) f_{\phi_d}(\phi_d^k) c_{\theta_h \theta_d} \{F_{\theta_h}(\theta_h^i), F_{\theta_d}(\theta_d^j)\}$$

$$c_{\theta_h \phi_d} \{F_{\theta_h}(\theta_h^i), F_{\phi_d}(\phi_d^k)\}$$

$$c_{\theta_d \phi_d | \theta_h} \{F(\theta_d^j | \theta_h^i), F(\phi_d^k | \theta_h^i)\}, \quad \text{and } i \in \mathbb{R}$$

$$(7)$$

Bilgili, Öztürk, and Kurt

Representing BRDF by Wavelet Transformation of Pair-Copulas

Table of Contents

- Introduction
 - Definitions of BRDFs
 - Properties of Proposed BRDF Representation
 - Our Proposed BRDF Representation
- 2 Previous Works
- 3 Copula Distributions
 - Pair-Copula Constructions
- BRDF Representation Using Pair-Copula Constructions
 - MIT MERL BRDF Dataset
 - Our BRDF Representation
 - Some Empirical Results
- 5 Our Estimation Procedure
- Importance Sampling
- 7 Results
- 8 Conclusions and Future Work
- Questions
- D Thank You
 - References

Some Empirical Results

Image: Image:

Some Empirical Results

• Our empirical results showed that among the others $c_{\theta_d \phi_d | \theta_h}$ is approximately uniformly distributed for almost all materials.

I ≡ ▶ < </p>

Some Empirical Results

• Our empirical results showed that among the others $c_{\theta_d \phi_d | \theta_h}$ is approximately uniformly distributed for almost all materials.

I ≡ ▶ < </p>

Some Empirical Results

- Our empirical results showed that among the others $c_{\theta_d \phi_d | \theta_h}$ is approximately uniformly distributed for almost all materials.
- It is seen from Figure 1 that sum of absolute errors between the estimated BRDFs and measured BRDFs are greater in the $(0, \pi/4)$ region than that of the region $(\pi/4, \pi/2)$.

同 ト イ ヨ ト イ ヨ ト

Some Empirical Results

- Our empirical results showed that among the others $c_{\theta_d \phi_d | \theta_h}$ is approximately uniformly distributed for almost all materials.
- It is seen from Figure 1 that sum of absolute errors between the estimated BRDFs and measured BRDFs are greater in the $(0, \pi/4)$ region than that of the region $(\pi/4, \pi/2)$.

同 ト イ ヨ ト イ ヨ ト

Some Empirical Results

- Our empirical results showed that among the others $c_{\theta_d \phi_d | \theta_h}$ is approximately uniformly distributed for almost all materials.
- It is seen from Figure 1 that sum of absolute errors between the estimated BRDFs and measured BRDFs are greater in the $(0, \pi/4)$ region than that of the region $(\pi/4, \pi/2)$.
- It is seen from Figure 3 that highest fitting errors were observed for $\theta_h < 45^\circ$ for most of the materials. After the 45 degrees the distribution are nearly similar.

BRDF Representation Using Pair-Copula Constructions

Figure 1 : Absolute fitting errors on every θ_h of measured dark-red-paint material (red channel).

Figure 2 : Absolute fitting errors on every θ_h of measured dark-red-paint material (red channel).

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Figure 3 : 2D $c_{\theta_d \phi_d | \theta_h}$ distributions of measured dark-red-paint material for various θ_h angles (red channel).

Representing BRDF by Wavelet Transformation of Pair-Copulas Estimation

Table of Contents

- Introduction
 - Definitions of BRDFs
 - Properties of Proposed BRDF Representation
 - Our Proposed BRDF Representation
- 2 Previous Works
- 3 Copula Distributions
 - Pair-Copula Constructions
- In BRDF Representation Using Pair-Copula Constructions
 - MIT MERL BRDF Dataset
 - Our BRDF Representation
 - Some Empirical Results

5 Our Estimation Procedure

- Importance Sampling
- 7 Results
- 8 Conclusions and Future Work
- Questions
- D Thank You
 - References

Representing BRDF by Wavelet Transformation of Pair-Copulas Estimation

Our Estimation Procedure

• Empirical marginal distributions $\hat{f}_{\theta_h}, \hat{f}_{\theta_d}$ and \hat{f}_{ϕ_d} are obtained from the normalized data.

直 ト イヨ ト イヨ ト

- Empirical marginal distributions $\hat{f}_{\theta_h}, \hat{f}_{\theta_d}$ and \hat{f}_{ϕ_d} are obtained from the normalized data.
- The 2D copula densities $c_{\theta_h\theta_d}\{F_{\theta_h}(\theta_h^i), F_{\theta_d}(\theta_d^j)\}$ and $c_{\theta_h\phi_d}\{F_{\theta_h}(\theta_h^i), F_{\phi_d}(\phi_d^k)\}$ are constructed and compressed with the Haar wavelets [8] by compression ratio of 1/16.

伺 ト イヨト イヨト

- Empirical marginal distributions $\hat{f}_{\theta_h}, \hat{f}_{\theta_d}$ and \hat{f}_{ϕ_d} are obtained from the normalized data.
- **②** The 2D copula densities $c_{\theta_h\theta_d}\{F_{\theta_h}(\theta_h^i), F_{\theta_d}(\theta_d^j)\}$ and $c_{\theta_h\phi_d}\{F_{\theta_h}(\theta_h^i), F_{\phi_d}(\phi_d^k)\}$ are constructed and compressed with the Haar wavelets [8] by compression ratio of 1/16.
- The 2D $c_{\theta_d \phi_d | \theta_h} \{ F(\theta_d^j | \theta_h^i), F(\phi_d^k | \theta_h^i) \}$ copula densities given in Equation 7 are constructed and compressed using the well-known Daubechies wavelets [8] with a compression ratio of 1/64.

伺 ト イヨト イヨト

- Empirical marginal distributions $\hat{f}_{\theta_h}, \hat{f}_{\theta_d}$ and \hat{f}_{ϕ_d} are obtained from the normalized data.
- **②** The 2D copula densities $c_{\theta_h\theta_d} \{F_{\theta_h}(\theta_h^i), F_{\theta_d}(\theta_d^j)\}$ and $c_{\theta_h\phi_d} \{F_{\theta_h}(\theta_h^i), F_{\phi_d}(\phi_d^k)\}$ are constructed and compressed with the Haar wavelets [8] by compression ratio of 1/16.
- The 2D $c_{\theta_d \phi_d | \theta_h} \{ F(\theta_d^i | \theta_h^i), F(\phi_d^k | \theta_h^i) \}$ copula densities given in Equation 7 are constructed and compressed using the well-known Daubechies wavelets [8] with a compression ratio of 1/64.
- For further compression, we looked at the errors for each given θ_h^i . As shown in Figure 2 and Figure 3, bivariate distributions become very similar to each other, when θ_h is greater than 40 degrees. We used this redundancy to improve the compression ratio of BRDF data.

向下 イヨト イヨト

- Empirical marginal distributions $\hat{f}_{\theta_h}, \hat{f}_{\theta_d}$ and \hat{f}_{ϕ_d} are obtained from the normalized data.
- **②** The 2D copula densities $c_{\theta_h\theta_d} \{F_{\theta_h}(\theta_h^i), F_{\theta_d}(\theta_d^j)\}$ and $c_{\theta_h\phi_d} \{F_{\theta_h}(\theta_h^i), F_{\phi_d}(\phi_d^k)\}$ are constructed and compressed with the Haar wavelets [8] by compression ratio of 1/16.
- The 2D $c_{\theta_d \phi_d | \theta_h} \{ F(\theta_d^i | \theta_h^i), F(\phi_d^k | \theta_h^i) \}$ copula densities given in Equation 7 are constructed and compressed using the well-known Daubechies wavelets [8] with a compression ratio of 1/64.
- For further compression, we looked at the errors for each given θ_h^i . As shown in Figure 2 and Figure 3, bivariate distributions become very similar to each other, when θ_h is greater than 40 degrees. We used this redundancy to improve the compression ratio of BRDF data.
- To render a color image, we follow a similar approach that was used by Ngan et al. [11], and we estimate the diffuse and specular parameters for each pair of measured BRDF of each color channel and the approximate BRDF values using a robust linear regression procedure [5].

Table of Contents

- Introduction
 - Definitions of BRDFs
 - Properties of Proposed BRDF Representation
 - Our Proposed BRDF Representation
- 2 Previous Works
- 3 Copula Distributions
 - Pair-Copula Constructions
- BRDF Representation Using Pair-Copula Constructions
 - MIT MERL BRDF Dataset
 - Our BRDF Representation
 - Some Empirical Results
 - Our Estimation Procedure

Importance Sampling

- Results
- Conclusions and Future Work
- Questions
- D Thank You
 - References

• Importance sampling is a variance reduction technique in Monte Carlo rendering.

★ ∃ →

- Importance sampling is a variance reduction technique in Monte Carlo rendering.
- For our representation, Rusinkiewicz [16] to standard coordinate system conversion is needed.

I ≡ →

- Importance sampling is a variance reduction technique in Monte Carlo rendering.
- For our representation, Rusinkiewicz [16] to standard coordinate system conversion is needed.
- We can use the standard coordinate system in the sampling function of our BRDF representation:

$$p_i(\theta_i, \phi_i \mid \theta_o, \phi_o) = \frac{\rho(\theta_i, \phi_i, \theta_o, \phi_o)}{p_o(\theta_o, \phi_o)},$$
(8)

- Importance sampling is a variance reduction technique in Monte Carlo rendering.
- For our representation, Rusinkiewicz [16] to standard coordinate system conversion is needed.
- We can use the standard coordinate system in the sampling function of our BRDF representation:

$$p_i(\theta_i, \phi_i \mid \theta_o, \phi_o) = \frac{\rho(\theta_i, \phi_i, \theta_o, \phi_o)}{p_o(\theta_o, \phi_o)},$$
(8)

 Then, we model ρ and p_o using pair-copula constructions and wavelet transforms. The computational cost of this sampling procedure is very expensive since generating incoming vectors from this 2D conditional pdf is not efficient.

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Representing BRDF by Wavelet Transformation of Pair-Copulas Results

Table of Contents

- Introduction
 - Definitions of BRDFs
 - Properties of Proposed BRDF Representation
 - Our Proposed BRDF Representation
- 2 Previous Works
- 3 Copula Distributions
 - Pair-Copula Constructions
- BRDF Representation Using Pair-Copula Constructions
 - MIT MERL BRDF Dataset
 - Our BRDF Representation
 - Some Empirical Results
 - Our Estimation Procedure
 - Importance Sampling
 - Results
 - Conclusions and Future Work
 - Questions
 - Thank You
 - References

Results

• 30 randomly chosen measured isotropic BRDF data from MERL MIT database [9].

▲御▶ ▲ 臣▶ ▲ 臣▶

Representing BRDF by Wavelet Transformation of Pair-Copulas Results

Results

- 30 randomly chosen measured isotropic BRDF data from MERL MIT database [9].
- Cook-Torrance BRDF model [4], Edwards et al. BRDF model [6], Ward BRDF model [17], and Bilgili et al. BRDF model [3] are used for comparison.

同 ト イ ヨ ト イ ヨ ト

Representing BRDF by Wavelet Transformation of Pair-Copulas Results

Results

- 30 randomly chosen measured isotropic BRDF data from MERL MIT database [9].
- Cook-Torrance BRDF model [4], Edwards et al. BRDF model [6], Ward BRDF model [17], and Bilgili et al. BRDF model [3] are used for comparison.
- PBRT [14] is used with the direct illumination option.

伺 ト イヨト イヨト

Representing BRDF by Wavelet Transformation of Pair-Copulas Results

Results

- 30 randomly chosen measured isotropic BRDF data from MERL MIT database [9].
- Cook-Torrance BRDF model [4], Edwards et al. BRDF model [6], Ward BRDF model [17], and Bilgili et al. BRDF model [3] are used for comparison.
- PBRT [14] is used with the direct illumination option.
- PSNR [15] is used for quantitative comparisons of rendered spheres with the original rendered spheres. Higher PSNR values indicate better approximations.

伺 ト イヨト イヨト

Representing BRDF by Wavelet Transformation of Pair-Copulas Results

Results

- 30 randomly chosen measured isotropic BRDF data from MERL MIT database [9].
- Cook-Torrance BRDF model [4], Edwards et al. BRDF model [6], Ward BRDF model [17], and Bilgili et al. BRDF model [3] are used for comparison.
- PBRT [14] is used with the direct illumination option.
- PSNR [15] is used for quantitative comparisons of rendered spheres with the original rendered spheres. Higher PSNR values indicate better approximations.
- Our model gives the highest PSNR values in 11 materials out of 30 materials and it can be seen as a good alternative to represent isotropic materials accurately.

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Representing BRDF by Wavelet Transformation of Pair-Copulas Results

Results

- 30 randomly chosen measured isotropic BRDF data from MERL MIT database [9].
- Cook-Torrance BRDF model [4], Edwards et al. BRDF model [6], Ward BRDF model [17], and Bilgili et al. BRDF model [3] are used for comparison.
- PBRT [14] is used with the direct illumination option.
- PSNR [15] is used for quantitative comparisons of rendered spheres with the original rendered spheres. Higher PSNR values indicate better approximations.
- Our model gives the highest PSNR values in 11 materials out of 30 materials and it can be seen as a good alternative to represent isotropic materials accurately.
- Based on the data set [9] we used, we need to store 60.4 KB data for each material, which requires 33 MB storage space (1/600 compression).

Representing BRDF by Wavelet Transformation of Pair-Copulas

▲口 ▶ ▲圖 ▶ ▲ 国 ▶ ▲ 国 ▶

æ

<ロ> <同> <同> < 同> < 同>

æ

Fruitwood-241 Material

Fruitwood-241 Material - Difference Images

<ロ> <同> <同> < 同> < 同>

æ

Gold-Metallic-Paint Material

Gold-Metallic-Paint Material - Difference Images

Nickel Material

(Bilgili et al., PSNR = 37.88)

(Ward, *PSNR* = 28.20)

Bilgili, Öztürk, and Kurt

(Our Model, PSNR = 41.72)

Representing BRDF by Wavelet Transformation of Pair-Copulas

Nickel Material - Difference Images

Bilgili, Öztürk, and Kurt Representing BRDF by Wav

Representing BRDF by Wavelet Transformation of Pair-Copulas

Table of Contents

- Introduction
 - Definitions of BRDFs
 - Properties of Proposed BRDF Representation
 - Our Proposed BRDF Representation
- 2 Previous Works
- 3 Copula Distributions
 - Pair-Copula Constructions
- BRDF Representation Using Pair-Copula Constructions
 - MIT MERL BRDF Dataset
 - Our BRDF Representation
 - Some Empirical Results
 - Our Estimation Procedure
 - Importance Sampling
 - Results
 - Conclusions and Future Work
 - Questions
 - Thank You
 - Reference

▲□ ▶ ▲ □ ▶ ▲ □

• In this paper, we introduced a compact technique to represent BRDF data using pair-copula constructions and wavelet transforms.

→ 3 → < 3</p>

- In this paper, we introduced a compact technique to represent BRDF data using pair-copula constructions and wavelet transforms.
- Our technique also can be generalized for compression of data from any multivariate distribution.

- In this paper, we introduced a compact technique to represent BRDF data using pair-copula constructions and wavelet transforms.
- Our technique also can be generalized for compression of data from any multivariate distribution.
- It is empirically shown that the proposed technique has provided satisfactory results.

- In this paper, we introduced a compact technique to represent BRDF data using pair-copula constructions and wavelet transforms.
- Our technique also can be generalized for compression of data from any multivariate distribution.
- It is empirically shown that the proposed technique has provided satisfactory results.
- As a future work;

- In this paper, we introduced a compact technique to represent BRDF data using pair-copula constructions and wavelet transforms.
- Our technique also can be generalized for compression of data from any multivariate distribution.
- It is empirically shown that the proposed technique has provided satisfactory results.
- As a future work;
 - It can be shown that this compression technique can be generalized to higher dimensional problems such as Bidirectional Scattering Surface Reflectance Distribution Function (BSSRDF), Spatially Varying Bidirectional Reflectance Distribution Function (SVBRDF), Bidirectional Texture Function (BTF).

- 4 同 ト 4 ヨ ト 4 ヨ ト

- In this paper, we introduced a compact technique to represent BRDF data using pair-copula constructions and wavelet transforms.
- Our technique also can be generalized for compression of data from any multivariate distribution.
- It is empirically shown that the proposed technique has provided satisfactory results.
- As a future work;
 - It can be shown that this compression technique can be generalized to higher dimensional problems such as Bidirectional Scattering Surface Reflectance Distribution Function (BSSRDF), Spatially Varying Bidirectional Reflectance Distribution Function (SVBRDF), Bidirectional Texture Function (BTF).

Representing BRDF by Wavelet Transformation of Pair-Copulas Questions

Table of Contents

- Introduction
 - Definitions of BRDFs
 - Properties of Proposed BRDF Representation
 - Our Proposed BRDF Representation
- 2 Previous Works
- 3 Copula Distributions
 - Pair-Copula Constructions
- BRDF Representation Using Pair-Copula Constructions
 - MIT MERL BRDF Dataset
 - Our BRDF Representation
 - Some Empirical Results
 - Our Estimation Procedure
 - Importance Sampling
 - Results
 - Conclusions and Future Work
 - Questions

References

・ 同 ト ・ ヨ ト ・ ヨ

Questions

Table of Contents

- Introduction
 - Definitions of BRDFs
 - Properties of Proposed BRDF Representation
 - Our Proposed BRDF Representation
- 2 Previous Works
- 3 Copula Distributions
 - Pair-Copula Constructions
- BRDF Representation Using Pair-Copula Constructions
 - MIT MERL BRDF Dataset
 - Our BRDF Representation
 - Some Empirical Results
 - 5 Our Estimation Procedure
 - Importance Sampling
 - Results
 - Conclusions and Future Work
 - Questions

References

・ 同 ト ・ ヨ ト ・ ヨ

THANK YOU!

э

- 4 同 6 4 日 6 4 日 6

Representing BRDF by Wavelet Transformation of Pair-Copulas References

Table of Contents

- Introduction
 - Definitions of BRDFs
 - Properties of Proposed BRDF Representation
 - Our Proposed BRDF Representation
- 2 Previous Works
- 3 Copula Distributions
 - Pair-Copula Constructions
- In BRDF Representation Using Pair-Copula Constructions
 - MIT MERL BRDF Dataset
 - Our BRDF Representation
 - Some Empirical Results
- 5 Our Estimation Procedure
- Importance Sampling
- 7 Results
- 8 Conclusions and Future Work
- Questions
- Thank You

References I

 Kjersti Aas, Claudia Czado, Arnoldo Frigessi, and Henrik Bakken.
 Pair-copula constructions of multiple dependence.
 Insurance: Mathematics and Economics, 44(2):182 – 198,

2009.

- [2] Tomas Akenine-Möller, Eric Haines, and Natty Hoffman. *Real-Time Rendering 3rd Edition*.
 A. K. Peters, Ltd., Natick, MA, USA, 2008.
- [3] Ahmet Bilgili, Aydın Oztürk, and Murat Kurt.
 A general brdf representation based on tensor decomposition.
 Computer Graphics Forum, 30(8):2427–2439, December 2011.

伺下 イヨト イヨト

References II

- [4] Robert L. Cook and Kenneth E. Torrance.
 A reflectance model for computer graphics. SIGGRAPH Computer Graphics, 15(3):307–316, 1981. (Proceedings of SIGGRAPH 81).
- [5] W. H. DuMouchel and F. L. O'Brien. Integrating a robust option into a multiple regression computing environment.

In K. Berk and L. Malone, editors, *Computing Science and Statistics: Proceedings of the 21st Symposium on the Interface*, pages 297–301, Alexandria, VA, 1989. American Statistical Association.

□ > < = > <

References III

- [6] Dave Edwards, Solomon Boulos, Jared Johnson, Peter Shirley, Michael Ashikhmin, Michael Stark, and Chris Wyman. The halfway vector disk for brdf modeling. ACM Transactions on Graphics, 25(1):1–18, January 2006.
- [7] Christian Genest, Esterina Masiello, and Karine Tribouley. Estimating copula densities through wavelets. *Insurance: Mathematics and Economics*, 44(2):170–181, April 2009.
- [8] Amara Graps.

An introduction to wavelets.

Computing in Science and Engineering, 2:50-61, 1995.

伺 ト イ ヨ ト イ ヨ

References IV

[9] Wojciech Matusik, Hanspeter Pfister, Matt Brand, and Leonard McMillan.

A data-driven reflectance model.

ACM Transactions on Graphics, 22(3):759–769, July 2003. (Proceedings of SIGGRAPH 2003).

[10] Roger B. Nelsen.

An Introduction to Copulas (Springer Series in Statistics). Springer-Verlag New York, Inc., Secaucus, NJ, USA, 2006.

[11] Addy Ngan, Frédo Durand, and Wojciech Matusik.Experimental analysis of brdf models.

In Kavita Bala and Philip Dutré, editors, *Proceedings of Eurographics Symposium on Rendering*, pages 117–126, Konstanz, Germany, 2005. Eurographics Association.

• • = • • = •

References V

[12] F. E. Nicodemus, J. C. Richmond, J. J. Hsia, I. W. Ginsberg, and T. Limperis.

Geometrical considerations and nomenclature for reflectance. Monograph, National Bureau of Standards (US), October 1977.

- [13] Aydın Öztürk, Murat Kurt, and Ahmet Bilgili. A copula-based brdf model. *Computer Graphics Forum*, 29(6):1795–1806, September 2010.
- [14] Matt Pharr and Greg Humphreys. Physically Based Rendering: From Theory to Implementation. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 2004.

直 ト イヨ ト イヨ ト

References VI

[15] Iain E. Richardson.

Video Codec Design: Developing Image and Video Compression Systems.

John Wiley & Sons, Inc., New York, NY, USA, 2002.

[16] Szymon M. Rusinkiewicz.

A new change of variables for efficient brdf representation. In George Drettakis and Nelson L. Max, editors, *Proceedings* of *Eurographics Workshop on Rendering*, pages 11–22, Vienna, Austria, 1998. Springer.

[17] Gregory J. Ward.

Measuring and modeling anisotropic reflection. *SIGGRAPH Computer Graphics*, 26(2):265–272, 1992. (Proceedings of SIGGRAPH 92).

