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Introduction

Introduction

Modeling the surface reflectance of light is an important issue
in computer graphics.

Expressing the surface reflectance by a mathematical model
has been studied extensively.

BRDFs are commonly used as mathematical models to
describe the surface reflectance.
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Bilgili, Öztürk, and Kurt Representing BRDF by Wavelet Transformation of Pair-Copulas



Representing BRDF by Wavelet Transformation of Pair-Copulas

Introduction

BRDF was first formulated by Nicodemus et al. [12] as

ρ(~ωi , ~ωo) =
dLo(~ωo)

Li (~ωi ) cos θid~ωi
, (1)

where ρ(~ωi , ~ωo) is the BRDF, Li and Lo are the incident and
reflected radiance, respectively, (~ωi , ~ωo) = {(θi , φi ), (θo , φo)}
are the corresponding incoming and outgoing vectors, d~ωi is
the differential solid angle in the ωi direction.
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Introduction

Definitions of BRDFs

The BRDF defined in Equation 1 is a four-dimensional (4D)
function.
If the reflection surface is assumed to be isotropic such as
plastic, nickel, etc. then the corresponding BRDF can be
expressed by a three-dimensional (3D) function.
On the other hand, anisotropic surfaces such as velvet,
brushed metal, etc. are represented by a 4D BRDF.

Nickel Isotropic BRDFs Yellow Satin
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Introduction

Properties of Proposed BRDF Representation

A physically correct BRDF representation must satisfy reciprocity,
energy conservation, and non-negativity properties of BRDF [6].

Reciprocity property is expressed as

ρ(~ωi , ~ωo) = ρ(~ωo , ~ωi ). (2)

Since our proposed model is based on the parametrization by
Rusinkiewicz [16], we enforce our system with the following
translation to ensure reciprocity property

φd = φd + π, (3)

where φd is azimuth angle of the difference vector described in
Rusinkiewicz [16] system.
Therefore the proposed model is a visually plausible representation,
since it only satisfies the reciprocity and non-negativity properties.
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Introduction

Our Proposed BRDF Representation

In this paper, we adopted Aas et al.’s [1] technique to
represent the BRDF.

Furthermore, we used wavelet transforms proposed by Genest
et al. [7] to compress the pair-copula distributions.

Our empirical results showed that the pair-copula
constructions and wavelet transforms provided satisfactory
approximations for the measured BRDF data.
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Previous Works

Modeling BRDFs by Probability Distributions

When a photon hits the surface of a
material, it scatters from surface to a
direction with a random distribution [2].
Considering certain probabilistic features of
the underlying process, various models have
been proposed to represent this random
reflection:

Ward [17] employed the Gaussian
distribution to model BRDFs.
Assuming that a material surface consists
of microfacets, Cook and Torrance [4]
modeled the orientation of these
microfacets using Beckmann distribution.
Among the other factors, they included this
univariate distribution in their BRDF model.
Edwards et al. [6] modeled the BRDF in
terms of a bivariate probability distribution.
Öztürk et al. [13] have modeled BRDF data
using Archimedean copula distributions.

Beckmann, m=0.2 Gaussian, m=0.2

Gaussian, m=0.6Beckmann, m=0.6
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Pair-Copula Constructions

Copula Distributions

A copula distribution is a multivariate distribution with
uniformly distributed U(0, 1) marginals.

Joint density function f is given as:

f (x1, x2, ..., xn) = c1···n{F1(x1),F2(x2), ...,Fn(xn)}
n∏

i=1

fi (xi ),

(4)
where c1···n is the copula pdf and fi (xi ), i = 1, 2, ..., n are the
marginal densities of joint pdf [7].
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Pair-Copula Constructions

It is shown that BRDF can be factorized using a cascade of
simple building blocks called pair-copulae [1].

An advantage of expressing distributions in terms of
pair-copulae is that some of the pairs can be ignored to
simplify the underlying representation.
For example, if a 3D pdf f with random variables X1,X2 and
X3 is given, and X1,X3 are independent given that X2, then
c13|2{F (x1|x2),F (x3|x2)} = 1.
Thus, the joint pdf can be expressed as:

f (x1, x2, x3) = c12{F1(x1),F2(x2)}c23{F2(x2),F3(x3)}
3∏

i=1

fi (xi ).

(5)
where ui = Fi (xi ), i = 1, 2, ..., n are the marginal distributions
of joint distribution F [10].
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Bilgili, Öztürk, and Kurt Representing BRDF by Wavelet Transformation of Pair-Copulas



Representing BRDF by Wavelet Transformation of Pair-Copulas

BRDF Representation Using Pair-Copula Constructions

Table of Contents
1 Introduction

Definitions of BRDFs
Properties of Proposed BRDF Representation
Our Proposed BRDF Representation

2 Previous Works
3 Copula Distributions

Pair-Copula Constructions
4 BRDF Representation Using Pair-Copula Constructions

MIT MERL BRDF Dataset
Our BRDF Representation
Some Empirical Results

5 Our Estimation Procedure
6 Importance Sampling
7 Results
8 Conclusions and Future Work
9 Questions

10 Thank You
11 References
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MIT MERL BRDF Dataset

In this work isotropic measured BRDF data
of Matusik et al. [9] is modeled using
pair-copulae and wavelet decompositions.

The measured data is parameterized using
the Rusinkiewicz [16] coordinate system.

The Rusinkiewicz parameterization depends
on θh, φh, θd and φd . It is well-known that
isotropic BRDF values are independent of
φh.

Therefore, the measured BRDF data of
Matusik et al. [9] is sampled at 90, 90, 180
resolutions for θh, θd and φd , respectively
giving total of 90× 90× 180 = 1.458.000
samples per color channel (Red-Green-Blue).

Bilgili, Öztürk, and Kurt Representing BRDF by Wavelet Transformation of Pair-Copulas



Representing BRDF by Wavelet Transformation of Pair-Copulas

BRDF Representation Using Pair-Copula Constructions

MIT MERL BRDF Dataset

In this work isotropic measured BRDF data
of Matusik et al. [9] is modeled using
pair-copulae and wavelet decompositions.

The measured data is parameterized using
the Rusinkiewicz [16] coordinate system.

The Rusinkiewicz parameterization depends
on θh, φh, θd and φd . It is well-known that
isotropic BRDF values are independent of
φh.

Therefore, the measured BRDF data of
Matusik et al. [9] is sampled at 90, 90, 180
resolutions for θh, θd and φd , respectively
giving total of 90× 90× 180 = 1.458.000
samples per color channel (Red-Green-Blue).
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Our BRDF Representation

Since we assume that the BRDF ρ(~ωi , ~ωo) can be viewed as a
multivariate pdf, then a simple normalization transformation is
made.

The scaled BRDF bijk is evaluated with the following
expression:

bijk =
b∗ijk
K
, (6)

where b∗ijk is the measured BRDF, and
K = δθhδθd δφd

∑n
i=1

∑m
j=1

∑r
k=1 b

∗
ijk is the scaling factor.

After the scaling transformation, the normalized BRDF, bijk
can be modeled in terms of pair-copulae as:

bijk = fθh(θih)fθd (θjd)fφd
(φkd)cθhθd{Fθh(θih),Fθd (θjd)}

cθhφd
{Fθh(θih),Fφd

(φkd)}
cθdφd |θh{F (θjd |θ

i
h),F (φkd |θih)}. (7)
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Some Empirical Results

Our empirical results showed that among the others cθdφd |θh is
approximately uniformly distributed for almost all materials.

It is seen from Figure 1 that sum of absolute errors between
the estimated BRDFs and measured BRDFs are greater in the
(0, π/4) region than that of the region (π/4, π/2).

It is seen from Figure 3 that highest fitting errors were
observed for θh < 45◦ for most of the materials. After the 45
degrees the distribution are nearly similar.
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Figure 1 : Absolute fitting errors on every θh of measured dark-red-paint
material (red channel).
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Figure 2 : Absolute fitting errors on every θh of measured dark-red-paint
material (red channel).
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Figure 3 : 2D cθdφd |θh distributions of measured dark-red-paint material
for various θh angles (red channel).
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Estimation

Our Estimation Procedure

1 Empirical marginal distributions f̂θh ,f̂θd and f̂φd
are obtained from the

normalized data.

2 The 2D copula densities cθhθd{Fθh(θih),Fθd (θjd)} and
cθhφd

{Fθh(θih),Fφd
(φkd)} are constructed and compressed with the

Haar wavelets [8] by compression ratio of 1/16.
3 The 2D cθdφd |θh{F (θjd |θ

i
h),F (φkd |θih)} copula densities given in

Equation 7 are constructed and compressed using the well-known
Daubechies wavelets [8] with a compression ratio of 1/64.

4 For further compression, we looked at the errors for each given θih. As
shown in Figure 2 and Figure 3, bivariate distributions become very
similar to each other, when θh is greater than 40 degrees. We used
this redundancy to improve the compression ratio of BRDF data.

5 To render a color image, we follow a similar approach that was used
by Ngan et al. [11], and we estimate the diffuse and specular
parameters for each pair of measured BRDF of each color channel
and the approximate BRDF values using a robust linear regression
procedure [5].
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Importance Sampling

Importance Sampling

Importance sampling is a variance reduction technique in
Monte Carlo rendering.

For our representation, Rusinkiewicz [16] to standard
coordinate system conversion is needed.

We can use the standard coordinate system in the sampling
function of our BRDF representation:

pi (θi , φi | θo , φo) =
ρ(θi , φi , θo , φo)

po(θo , φo)
, (8)

Then, we model ρ and po using pair-copula constructions and
wavelet transforms. The computational cost of this sampling
procedure is very expensive since generating incoming vectors
from this 2D conditional pdf is not efficient.
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Results

Results

30 randomly chosen measured isotropic BRDF data from
MERL MIT database [9].

Cook-Torrance BRDF model [4], Edwards et al. BRDF
model [6], Ward BRDF model [17], and Bilgili et al. BRDF
model [3] are used for comparison.
PBRT [14] is used with the direct illumination option.
PSNR [15] is used for quantitative comparisons of rendered
spheres with the original rendered spheres. Higher PSNR
values indicate better approximations.
Our model gives the highest PSNR values in 11 materials out
of 30 materials and it can be seen as a good alternative to
represent isotropic materials accurately.
Based on the data set [9] we used, we need to store 60.4 KB
data for each material, which requires 33 MB storage space
(1/600 compression).
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Bilgili, Öztürk, and Kurt Representing BRDF by Wavelet Transformation of Pair-Copulas



Representing BRDF by Wavelet Transformation of Pair-Copulas

Results

Results

30 randomly chosen measured isotropic BRDF data from
MERL MIT database [9].
Cook-Torrance BRDF model [4], Edwards et al. BRDF
model [6], Ward BRDF model [17], and Bilgili et al. BRDF
model [3] are used for comparison.
PBRT [14] is used with the direct illumination option.

PSNR [15] is used for quantitative comparisons of rendered
spheres with the original rendered spheres. Higher PSNR
values indicate better approximations.
Our model gives the highest PSNR values in 11 materials out
of 30 materials and it can be seen as a good alternative to
represent isotropic materials accurately.
Based on the data set [9] we used, we need to store 60.4 KB
data for each material, which requires 33 MB storage space
(1/600 compression).
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In this paper, we introduced a compact technique to represent
BRDF data using pair-copula constructions and wavelet
transforms.

Our technique also can be generalized for compression of data
from any multivariate distribution.
It is empirically shown that the proposed technique has
provided satisfactory results.
As a future work;

It can be shown that this compression technique can be
generalized to higher dimensional problems such as
Bidirectional Scattering Surface Reflectance Distribution
Function (BSSRDF), Spatially Varying Bidirectional
Reflectance Distribution Function (SVBRDF), Bidirectional
Texture Function (BTF).
We also would like to represent 4D measured anisotropic
BRDF data with our representation.
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Bilgili, Öztürk, and Kurt Representing BRDF by Wavelet Transformation of Pair-Copulas



Representing BRDF by Wavelet Transformation of Pair-Copulas

References

References III

[6] Dave Edwards, Solomon Boulos, Jared Johnson, Peter Shirley,
Michael Ashikhmin, Michael Stark, and Chris Wyman.
The halfway vector disk for brdf modeling.
ACM Transactions on Graphics, 25(1):1–18, January 2006.

[7] Christian Genest, Esterina Masiello, and Karine Tribouley.
Estimating copula densities through wavelets.
Insurance: Mathematics and Economics, 44(2):170–181, April
2009.

[8] Amara Graps.
An introduction to wavelets.
Computing in Science and Engineering, 2:50–61, 1995.
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