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Abstract

We present a new real-time importance sampling algorithm for en-
vironment maps. Our method is based on representing environment
maps using kd-tree structures, and generating samples with a single
data lookup. An efficient algorithm has been developed for real-
time image-based lighting applications. In this paper, we compared
our algorithm with Inversion method [Fishman 1996]. We show
that our proposed algorithm provides compactness and speedup as
compared to Inversion method. Based on a number of rendered
images, we have demonstrated that in a fixed time frame the pro-
posed algorithm produces images with a lower noise than that of
the Inversion method. We also demonstrate that our algorithm can
successfully represent a wide range of material types.

CR Categories: Computer Graphics [I.3.7]: Three-Dimensional
Graphics and Realism—Color, shading, shadowing, and texture

Keywords: environment maps, importance sampling, monte carlo
integration, global illumination, rendering, GPU, kd-tree

1 Introduction

Environment maps are commonly used for modeling natural light-
ing to create realistic images. Complex real-world illumination
can be represented efficiently by environment maps. However,
high quality rendering of scenes under image-based lighting re-
quires efficient sampling strategies. In this context various sam-
pling strategies have been proposed to reduce the noise in ren-
dered images. The underlying sampling strategies include environ-
ment map sampling, bidirectional reflectance distribution function
(BRDF) [Nicodemus et al. 1977] sampling, product sampling, and
multiple importance sampling (MIS) [Veach 1998].

It has been shown empirically that using neither environment map
nor BRDF sampling alone results in images with low noise ra-
tios [Veach 1998]. Product sampling and real-time shading strate-
gies have been proposed to reduce the noise of rendered images. A
common drawback of theses strategies is their high computational
cost.

On the other hand, the variance of the estimated outgoing radi-
ance can be reduced by using MIS [Veach 1998] which samples
environment map and BRDF separately and obtains the probability
weighted mixtures of these samples. MIS has been shown to be an
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efficient strategy for reducing variance in rendered images [Veach
1998]. A natural approach for reducing the computational cost of
this rendering procedure is to implement this algorithm on GPU
hardware. Often, such procedures require environment map sam-
pling performed on GPU. In this paper, we propose a new envi-
ronment map sampling algorithm based on kd-trees which can be
implemented on modern GPUs.

A commonly used environment map sampling strategy, namely In-
version method [Fishman 1996], has the drawback of using large
number of data lookups. On the average, inversion method per-
forms a binary search for each generated sample in O(logn) data
lookups. Our proposed importance sampling method needs a sin-
gle data lookup and therefore has lower running time for generating
samples from environment maps. We empirically show that our al-
gorithm is efficient in real-time rendering.

The rest of this paper is organized as follows. In Section 2, some of
the relevant work in sampling from environment maps and real-time
shading for image-based lighting are presented. Section 3 describes
our approach. Some empirical results are presented in Section 4.
The conclusions and future work is given in Section 5.

2 Related Work

Monte Carlo importance sampling has been investigated by com-
puter graphics community for many years [Veach 1998]. Impor-
tance sampling is an empirical method of integration to reduce vari-
ance by generating samples from a distribution that closely resem-
bles the integrand itself [Pharr and Humphreys 2010]. Environment
map sampling, BRDF sampling, product sampling and MIS are
well-known importance sampling techniques for rendering scenes
under image-based lighting.

Some other methods including stratified sampling [Arvo 2001], hi-
erarchical sampling [Debevec 2005], structured importance sam-
pling [Agarwal et al. 2003], fast blue noise sampling [Ostro-
moukhov et al. 2004], interleaved sampling [Kollig and Keller
2003], and inversion of the cumulative density function (cdf) [Sec-
ord et al. 2002; Lawrence et al. 2005] have also been proposed for
environment map sampling. All of these methods are essentially
based on generating samples considering the energy distribution of
the environment map [Wang and Åkerlund 2009]. Some of these
methods [Kollig and Keller 2003; Ostromoukhov et al. 2004; De-
bevec 2005] generate a sample set in a precomputation step, and
use this sample set in rendering. Using a fixed sample set in this
way produces banding artifacts for specular materials.

Product of BRDFs and environment maps can be considered to
reduce the variance in Monte Carlo integration. This method is
known as product sampling. [Burke et al. 2005] proposed a bidi-
rectional importance sampling method for product sampling. Their
method is based on sampling-importance resampling (SIR) algo-
rithm. Wavelets [Clarberg et al. 2005; Huang et al. 2007] and spher-
ical harmonics [Jarosz et al. 2009] have also been used for product
sampling. Although, they provide considerable compression, the
computational cost for generating a sample can be high.
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Figure 1: Rendered environment maps (Uffizi) (a): 2048×1024 resolution environment map requiring 8MBs of memory. (b), (c), (d): Same
environment map compressed to 48KB (1:170 compression) using range, variance, and SSE criteria, respectively. Environment maps used in
this work are a courtesy of Debevec.

Direct illumination from environment maps for real-time appli-
cations needs careful attention. Some researchers [Greene 1986;
Heidrich and Seidel 1999; Kautz and McCool 2000; Kautz et al.
2000; Ramamoorthi and Hanrahan 2002; Sloan et al. 2002; Ng
et al. 2003] have used expensive precomputations, others [Ra-
mamoorthi and Hanrahan 2001; Křivánek and Colbert 2008] have
failed to provide an accurate and general method for all material
types for rendering scenes interactively. For example, Křivánek
and Colbert’s method [Křivánek and Colbert 2008] do not repre-
sent anisotropic materials properly, Ramamoorthi and Hanrahan’s
method [Ramamoorthi and Hanrahan 2001] is unable to represent
specular materials well.

Kd-tree structure is a well-known data structure used in computer
graphics. [McCool and Harwood 1997] used kd-tree structure for
importance sampling of conditional distributions such as tabulated
BRDF data. They proposed to split the multidimensional function
from its center point on each level of the kd-tree. They also pro-
posed a traversal algorithm to generate samples from the condi-
tional probability distribution. On the other hand, our algorithm
reduces the error by optimizing the split plane position. While this
algorithm runs in O(log(n)) time our proposed algorithm requires
O(1) time to generate a sample. Kd-tree structures can also be used
for ray-tracing, photon-mapping, and k-means clustering [Wang
et al. 2009] in computer graphics applications.

The need of using empirical cdfs is unavoidable when dealing with
measured illumination [Lawrence et al. 2005]. It is not a trivial
process to compress and represent them accurately in an interactive
application. A simple solution for real-time environment map sam-
pling could be using inversion method [Fishman 1996] which takes
O(logn) time for each generated sample. Our kd-tree based method
generates a sample in O(1) time, providing high compression rates.
It is also computationally feasible for real-time rendering and suit-

able for all material types including isotropic, anisotropic, diffuse,
glossy and specular materials.

3 Proposed Method for Environment Map
Sampling

An environment map is defined as a w×h rectangular block. Pixel
intensities in this rectangular block can be viewed as sampled prob-
ability densities from an unknown bivariate distribution with uni-
form spacing. In this work, pixel intensities in an environment
map are normalized with respect to their block sum so that the vol-
ume under the underlying empirical distribution is made equal to
1. Our proposed method is based on splitting this environment map
into sub-blocks by using a kd-tree structure. Empirical probabil-
ities corresponding to each sub-block are obtained as sum of the
normalized pixel intensities within this sub-block. These empirical
probabilities are then sorted in descending order and correspond-
ing block indices are assigned in increasing order. Thus, the plots
of these probabilities against sub-block indices can be considered
as empirical distribution of these sub-block indices. Representing
the empirical distribution of sub-blocks in this way provides a good
ground for modeling this empirical distribution by a simple proba-
bility density function (pdf). Finally, the resulting estimated model
can be used to generate samples for incoming light.

3.1 Kd-tree construction

Kd-tree structure is based on splitting an environment map block
recursively. Splitting process is continued until a predetermined
number of sub-blocks have been created. Then each pixel intensity
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Figure 2: Empirical pdfs of various environment maps and fitted analytical pdfs. Our analytical pdf model can be found in Equation 4.

Algorithm 1 createTree(nBlocks)
/* fi j is the 2D environment map block*/
block← fi j such that 1≤ i≤ w and 1≤ j ≤ h
blockList.add(block)
for k = 2→ nBlocks do

subBlock← selectBlock(blockList)
blockList.remove(subBlock)
[lSubBlock,rSubBlock]← splitBlock(subBlock)
blockList.add(lSubBlock)
blockList.add(rSubBlock)

end for

Algorithm 2 selectBlock(blockList)
maxError← 0
selectedSubBlock← null
for each subBlock ∈ blockList do

error← ∑ f 2
i j− (∑ fi j)

2/(wb×hb)

if maxError < error then
maxError← error
selectedSubBlock← subBlock

end if
end for
return selectedSubBlock

within a sub-block is replaced with its sub-block mean. Finally, the
original environment map can be reconstructed using these mean
pixel intensities in the sub-blocks. The reconstructed environment
map is an approximation to the original image and the accuracy
of the approximation depends on the predetermined number of sub-
blocks to be created.The pseudocode for this procedure is presented
in Algorithm 1.

Choosing the most convenient sub-block for splitting during recur-
sion needs a special handling. We proceed to choose the sub-block
having the largest intensity variation first. Various measures of vari-
ation can be used for this purpose. Results of using three different
statistics namely range, variance, and sum of squared error (SSE)
for sub-block selection criteria are shown in Figure 1. Based on
this special environment map (Uffizi), it is seen that the best result
is obtained when SSE is used as selection criterion. This result has
also been observed on a number of environment maps.

In this work, we propose to use SSE which is defined by

SSE =
wb

∑
i=1

hb

∑
j=1

(
fi j− f̄

)2
, (1)

as a selection criterion where f̄ is the sub block mean, wb and hb

Algorithm 3 splitBlock(subBlock)
splitF ← 0
for k = 1→ wb do

lSubBlock← fi j such that 1≤ i≤ k
rSubBlock← fi j such that k < i≤ wb
lSize← lSubBlock.Width× lSubBlock.Height
rSize← rSubBlock.Width× rSubBlock.Height
lSum← sum of values in lSubBlock
rSum← sum of values in rSubBlock
F ← lSum2/lSize+ rSum2/rSize
if F > splitF then

splitF = F
subBlock1 = lSubBlock
subBlock2 = rSubBlock

end if
end for
for m = 1→ hb do

tSubBlock← fi j such that 1≤ j ≤ m
bSubBlock← fi j such that m < j ≤ hb
tSize← tSubBlock.Width× tSubBlock.Height
bSize← bSubBlock.Width×bSubBlock.Height
tSum← sum of values in tSubBlock
bSum← sum of values in bSubBlock
F ← tSum2/tSize+bSum2/bSize
if F > splitF then

splitF = F
subBlock1 = tSubBlock
subBlock2 = bSubBlock

end if
end for
return [subBlock1,subBlock2]

are the sub-block dimensions. This expression can be rewritten as

SSE =
wb

∑
i=1

hb

∑
j=1

f 2
i j−

1
wb×hb

(
wb

∑
i=1

hb

∑
j=1

fi j

)2

. (2)

Note that the SSE is the same as the sample variance multiplied by
(wb× hb) that is the number of pixels in the sub-block. The main
reason of using SSE instead of sample variance as a selection cri-
terion is that it carries information about the underlying sub-block
size. The pseudocode of this procedure is presented in Algorithm 2.

Given a sub-block in a kd-tree, the splitting plane position is de-
termined in such a way that the pooled variance [Killeen 2005] of
the children blocks is minimum. It can be shown that minimization
of the pooled variance can be reduced to maximizing the sum of
squares of sub-block totals divided by their respective number of



Figure 3: Comparison of inversion method (left) and our method
(right) in real-time rendering. In this scene, the chrome-steel teapot
has been rendered with both methods using 16 samples/pixel for
testing real-time rendering performance.
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Figure 4: Comparison of our method and inversion method in real-
time rendering. Both of the methods were rendered with 16 sam-
ples/pixel. The FPS rates are measured under different environment
maps.

pixels that is

argmax
k

 1
k

(
∑

hb
j=1 ∑

k
i=1 fi j

)2
+

1
wb−k

(
∑

hb
j=1 ∑

wb
i=k+1 fi j

)2

 , (3)

where wb and hb are width and height of the sub-block, respec-
tively. The maximization procedure based on Equation 3 is per-
formed along horizontal edge of the block. A similar procedure
should also be carried out along the vertical edge. Pseudocode of
this optimization is presented in Algorithm 3.

3.2 Approximation for sub-block distribution

As was mentioned in the previous section, empirical block proba-
bilities are sorted in descending order. Therefore, the corresponding
pdf is expected to be an exponential type distribution (see Figure 2).
We approximate this pdf by the following monotonically decreas-
ing function

p(x) =
1

log
(
1+ n

α

)
(α + x)

,0≤ x≤ n, (4)

where n is the total number of sub-blocks in the kd-tree, and α is
the parameter of the distribution. It is easy to show that∫ n

0
p(x)dx = 1, (5)
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Figure 5: FPS rates of our method and the inversion method for
different sample sizes and environment maps.

and the corresponding cdf is

P(x) =
log
(
1+ x

α

)
log
(
1+ n

α

) , (6)

where α and n are described in Equation 4.

Various statistical methods can be used to estimate the non-linear
parameter α of the distribution. We estimate the parameter using
the empirical sub-block distribution. L1-norm estimate of the pa-
rameter is obtained by minimizing the objective function

n

∑
x=1
|p̃(x)− p(x)|, (7)

where x is the index number of the block, n is the number of blocks,
p̃(x) is the empirical pdf, and p(x) is the pdf described in Equa-
tion 4. Levenberg-Marquardt algorithm implemented in C/C++
Minpack package [Devernay 2012] is used for minimization of the
objective function in Equation 7.

In order to give some insight into the accuracy of the approxima-
tion, empirical and fitted pdfs for three different environment maps
are obtained and their plots are given in Figure 2. The approxi-
mation quality can be improved by introducing more non-linear pa-
rameters in the fitted model. However, a pdf with a single parameter
has been found to be satisfactory for our sampling procedure.

Pre-processing steps can be summarized as:

1. Kd-tree is constructed using Algorithm 1.

2. In order to form the empirical pdf of the block indices, sub-
blocks of the Kd-tree are sorted in descending order based on
their average values.

3. The empirical pdf is then approximated by the analytical pdf
given in Equation 4. The parameter of this pdf is estimated by
using L1-norm minimization.

4. The pdf parameter and the sub-block bounds are stored to be
used later in the sampling procedure.

3.3 Sampling the incoming light

Our importance sampling strategy simply consists of generating
sub-block indices first and then generating incoming light direction



(PSNR = 36.90 dB) (PSNR = 39.22 dB)

(PSNR = 36.07 dB) (PSNR = 40.83 dB)

(PSNR = 43.92 dB) (PSNR = 45.47 dB)

Figure 6: Rendered spheres based on different materials and different sampling methods. Top row: fabric-pink, middle row: blue-metallic-
paint, bottom row: chrome-steel materials; first column: reference images were rendered with 512 samples/pixel, second column: images
were rendered using inversion method with 8 samples/pixel. third column: images were rendered using kd-tree method with 32 samples/pixel.
Insets show the difference between the methods and reference images, and they are scaled by a factor of 5 for higher visibility. PSNR values
between the methods and reference images were also shown below each image.

within this block. Once the pdf of the block indices is estimated,
then the corresponding cdf is obtained easily. Sub-block indices can
be generated using the well-known probability integral transforma-
tion method of obtaining random samples from a known distribu-
tion. The following inverse function of the cdf based on Equation 6
is used for generating sub-block indices

x = P−1(ξ ) = α

((
1+

n
α

)ξ

−1
)
, (8)

where α and n are described in Equation 4 and ξ is a uniform (0,1)
random variable.

Light direction vectors can be determined randomly by generating
the corresponding elevation and azimuth angles. These two vari-
ables are not necessarily uniformly and independently distributed
in the original environment map. However, they are uniformly
distributed within the sub-blocks of the reconstructed environment
map since pixel intensities are replaced with their sub-block mean.

Therefore, we store the bounds of the sub-blocks in an array and
access the corresponding sub-block with the sub-block index gen-
erated using Equation 8. Within the bounds of the sub-block, we
generate two uniform random variables corresponding to elevation
and azimuth angles to obtain a random incoming light direction.

Sampling procedure can be summarized as:

1. Generate three random variables: ξ1,ξ2,ξ3.

2. Select the corresponding block index x = P−1(ξ1), using
Equation 8.

3. Read the bounds of the selected sub-block.

4. Generate elevation and azimuth angles uniformly within the
bounds of the selected sub-block using ξ2,ξ3.

5. The probability of this sample can be computed with
p(x)/Area(sub-block).
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Figure 7: Rendered spheres using anisotropic Ward BRDF model with parameters αx = 0.5,αy = 0.001. (a) Reference image, (b) our kd-tree
based importance sampling method (c) Křivánek and Colbert’s real-time filtered importance sampling method.

4 Results

We employed the MIS strategy to investigate some empirical prop-
erties of our kd-tree based importance sampling procedure. The
MIS strategy requires generating samples both from a BRDF model
and from an environment map. In this work, Ward model [Ward
1992] is employed to represent BRDF. Parameters of Ward model
have been obtained by Ngan et al. [Ngan et al. 2005] for a number of
diffuse and specular materials. We have used their published results
for this model. Samples from an environment map were generated
following the procedures explained in Section 3. To compare our
method with its competitors, we have implemented a commonly
used sampling method, namely inversion method [Fishman 1996].
Křivánek and Colbert’s implementation of their method [Křivánek
and Colbert 2008] has also been included in the comparison.

Real-time rendering implementations of our method and inversion
method [Fishman 1996] were made using OpenSceneGraph [Burns
and Osfield 2004], NVIDIA CUDA [NVIDIA 2012], and Ran-
dom123 [Salmon et al. 2011] libraries. Our method, and the inver-
sion method [Fishman 1996] were implemented using Physically
Based Rendering Toolkit (PBRT) [Pharr and Humphreys 2010] for
off-line renderings. All programs were executed on an Intel Core
i7-920 (2.67 GHz) with 12GBs of RAM and NVIDIA GeForce
GTX 480 GPU.

Renderings of a teapot object based on inversion method and our
method are presented in Figure 3. The images in the figure are the
screenshots of a dynamic scene rendered using inversion and our
method with 19 and 72 frames per second (FPS), respectively.

Three environment maps and three material types are used to com-
pare the methods in terms of frame rates. The empirical results are
illustrated in Figure 4. Scenes including a teapot object are ren-
dered using 16 samples per pixel. It is seen in the figure that our
method has higher FPS values than that of inversion method [Fish-
man 1996] in all cases. The low performance of inversion method
is due to the fact that it performs data lookups in O(log(n)) while
our method performs a single data lookup for a single sample. As
is seen in Figure 4, inversion method performs poorly especially on
environment maps having small variation. It is interesting to note
that even the performance of our method slightly depends on the
BRDF types, it does not depend on the type of environment map
used.

To investigate the relative performance of the methods under dif-
ferent sample sizes, we rendered a teapot object with n = 8,16,32
and 64 samples per pixel for three different environment maps. The
results are shown in Figure 5. It is seen that our method has higher

performance for all sample sizes. The effect of different environ-
ment maps on the performance of the inversion method [Fishman
1996] is clearly observed.

We made a visual comparison of the methods by fixing the render-
ing times at 40 FPS and rendered spheres under direct illumina-
tion using Doge2 [Debevec 1998] environment map. The render-
ing results are shown in Figure 6. The Peak Signal-to-Noise Ratio
(PSNR) [Richardson 2002] values for each rendered sphere were
calculated and shown on the figure. In this special implementation,
our method has uniformly yielded higher PSNR values. This ex-
pected situation is due to the higher number of samples generated
by our method than that of inversion method [Fishman 1996] within
a fixed time frame.

Since our kd-tree based importance sampling method is a direct
implementation of Monte Carlo importance sampling, it can rep-
resent every material type accurately. In order to demonstrate this
situation, we rendered spheres in real-time using anisotropic Ward
BRDF model [Ward 1992] with parameters αx = 0.5,αy = 0.001.
We compared our method with that of GPU-based real-time shading
method proposed by Křivánek and Colbert [Křivánek and Colbert
2008]. As shown in Figure 7, our method represents anisotropic
materials accurately. Křivánek and Colbert reported that their
method may not represent anisotropic materials efficiently, and they
left removing this limitation as a future work.

An attractive property of our method is that it has the flexibility
of controlling the number of sub-blocks to be used. To increase
the compression ratio of an environment map, we need to decrease
the number of the underlying sub-blocks. Environment maps hav-
ing small variations generally require small number of sub-blocks
at a given quality level. Therefore, higher compression ratios can
be achieved for this kind of environment maps. In our case, to fit
the environment map data into GPU constant buffer, we selected
6144, 6144, 16 as the number of sub-blocks for Uffizi, Doge2,
and Constant environment maps, respectively. The compression ra-
tios of our method relative to inversion method were found to be
1 : 170,1 : 170, and 1 : 65536 for Uffizi, Doge2, and Constant envi-
ronment maps, respectively.

5 Conclusions and Future Work

In this work, a kd-tree based method for importance sampling of en-
vironment maps has been proposed. We compared our method with
a well-known importance sampling method, namely the Inversion
method. We compared both methods on different platforms, such



as CPU and GPU. Real-time rendering times (FPS values), image
qualities (PSNR values), and compression ratios were obtained for
comparison by using different environment maps. We have em-
pirically showed that our method has outperformed the inversion
method in terms of real-time rendering times, image qualities, and
compression ratios.

We also compared our method with a real-time GPU-based impor-
tance sampling method proposed by Křivánek and Colbert. Based
on a single material, we demonstrated that our method can also be
used for anisotropic materials, and it can represent the material ac-
curately under direct illumination.

As a future work, kd-tree sampling of other multi-dimensional
functions such as BRDF will further be investigated.
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