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Abstract

Bidirectional Reflectance Distribution Functions (BRDFs) are well-
known functions in computer graphics, and these special func-
tions represent the surface reflectance of materials. BRDFs can be
viewed as multivariate probability density function (pdf) of incom-
ing photons leaving in a particular outgoing direction. However,
constructing a multivariate probability distribution for modeling a
given BRDF is difficult. A family of distributions, namely Copula
distributions have been used to approximate BRDF. In this work,
we employ the Pair-Copula constructions to represent the mea-
sured BRDF densities. As the measured BRDF densities have large
storage needs, we use Wavelet transforms for a compact BRDF
representation. We also compare the proposed BRDF representa-
tion with a number of well-known BRDF models, and show that
our compact BRDF representation provides good approximation to
measured BRDF data.

CR Categories: Computer Graphics [I.3.7]: Three-Dimensional
Graphics and Realism—Color, shading, shadowing, and texture

Keywords: Copula distributions, BRDF representation, reflection
models, rendering, global illumination, wavelet, pair-copula con-
structions

1 Introduction

Modeling the surface reflectance of light is an important issue in
computer graphics. Expressing the surface reflectance by a mathe-
matical model has been studied extensively. BRDFs are commonly
used as mathematical models to describe the surface reflectance.
BRDF was first formulated by Nicodemus et al. [1977] as

ρ(~ωi, ~ωo) =
dLo(~ωo)

Li(~ωi)cosθid~ωi
, (1)

where ρ(~ωi, ~ωo) is the BRDF, Li and Lo are the incident and re-
flected radiance, respectively, (~ωi, ~ωo) = {(θi,φi),(θo,φo)} are the
corresponding incoming and outgoing vectors expressed in spheri-
cal coordinates using the elevation (θ ) and azimuth (φ ) angles, d~ωi
is the differential solid angle in the ωi direction. Here radiance can
be thought of as the pixel intensity at a given position of an image.
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It is noted that BRDF is the ratio of outgoing radiance dLo(~ωo) to
incoming irradiance.

BRDF is defined only above the surface that is on the upper hemi-
sphere. The support for the elevation angle is [0,π/2] and for the
azimuth angle is [0,2π] since the light transportation or the scatter-
ing below the surface is not considered.

The BRDF defined in Equation 1 is a four-dimensional (4D) func-
tion. The number of dimensions of the BRDF can be reduced if
certain physical properties of the material surface can be assumed.
If the reflection surface is assumed to be isotropic such as plastic,
nickel, etc. then the corresponding BRDF can be expressed by a
three-dimensional (3D) function. On the other hand, anisotropic
surfaces such as velvet, brushed metal, etc. are represented by a 4D
BRDF.

A physically correct BRDF representation must satisfy reciprocity,
energy conservation, and non-negativity properties of BRDF [Ed-
wards et al. 2006]. Reciprocity property is expressed as

ρ(~ωi, ~ωo) = ρ(~ωo, ~ωi), (2)

where ρ(~ωi, ~ωo), ~ωi, and ~ωo are described in Equation 1.
Since our proposed model is based on the parameterization by
Rusinkiewicz [1998], we enforce our system with the following
translation to ensure reciprocity property

φd = φd +π, (3)

where φd is azimuth angle of the difference vector described in
Rusinkiewicz [1998] system. Therefore the proposed model is a vi-
sually plausible representation, since it only satisfies the reciprocity
and non-negativity properties, but it does not guarantee energy con-
servation property.

Certain probabilistic properties of reflection have been used in var-
ious BRDF models including [Phong 1975; Blinn 1977; Cook and
Torrance 1981; He et al. 1991; Ward 1992; Oren and Nayar 1994;
Lafortune et al. 1997; Ashikhmin and Shirley 2000; Dür 2006].
Considering the energy conservation property of BRDF, Edwards et
al. [2006] have proposed a bivariate probability BRDF, and Geisler-
Moroder and Dür [2010] have made some modifications to Ward-
Dür BRDF model [Dür 2006].

Aas et al. [2009] proposed a technique to model multivariate data
using a cascade of pair-copulae, employing two variables at a time.
In this paper, we adopted this technique to represent the BRDF.
Furthermore, we used wavelet transforms proposed by Genest et
al. [2009] to compress the pair-copula distributions. Our empiri-
cal results showed that the pair-copula constructions and wavelet
transforms provided satisfactory approximations for the measured
BRDF data.

2 Modeling BRDF by Probability Distribu-
tions

When a photon hits the surface of a material, it scatters from sur-
face to a direction with a random distribution [Akenine-Möller et al.
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Figure 1: Absolute fitting errors on every θh of measured dark-red-
paint material (red channel).

2008]. Considering certain probabilistic features of the underlying
process, various models have been proposed to represent this ran-
dom reflection. For example, Ward [1992] employed the Gaussian
distribution to model bidirectional scattering of a given surface. As-
suming that a material surface consists of microfacets, Cook and
Torrance [1981] modeled the orientation of these microfacets using
Beckmann distribution. Among the other factors, they included this
univariate distribution in their BRDF model.

A different approach based on treating BRDF data in the context
of probability theory was used by Edwards et al. [2006]. They
modeled the BRDF in terms of a bivariate probability distribution.
The underlying bivariate probability distribution was expressed as
a function of the halfway vector which is defined as:

~ωh =
~ωi +~ωo

‖~ωi +~ωo‖
, (4)

where ~ωi and ~ωo are the corresponding incoming and outgoing vec-
tors.

Öztürk et al. [2010] have modeled BRDF data using Archimedean
copula distributions. In their work, Archimedean copula distribu-
tions are represented by the corresponding empirical marginal dis-
tributions of BRDF data and some non-linear parameters. Their
BRDF model is based on using a special parameterization of
Rusinkiewicz [1998]. This parameterization is based on the
halfway vector ~ωh = (θh,φh) and the difference vector ~ωd =
(θd ,φd). This BRDF parameterization aligns certain BRDF fea-
tures with directions of certain BRDF phenomena [Lawrence et al.
2004; Ngan et al. 2005]. In this work, we adopted Aas et
al. [2009]’s technique which is based on factorizing multivariate
data using a cascade of pair-copulae, and does not require non-
linear parameters. This makes our data fitting procedure more sta-
ble when compared to BRDF models proposed by [Blinn 1977;
Cook and Torrance 1981; Lafortune et al. 1997; Öztürk et al. 2010].
All of these BRDF models require non-linear parameter estimation
techniques in their data fitting process. We also applied wavelet
transforms [Genest et al. 2009] to the pair-copula distributions for
obtaining a compact BRDF representation.

A well-known measured data set [Matusik et al. 2003] was used
for testing and comparison purposes. This data set includes

100 materials each of which requires 33 MB storage space.
Rusinkiewicz [1998] parameterization was used to store the under-
lying measured BRDF data. Clearly, the size of the data is pro-
hibitively large for rendering in a practical application. This prob-
lem can be overcome by employing a compact BRDF representa-
tion.

Measured BRDF data can be modeled by a multivariate probabil-
ity distribution provided that an appropriate scaling transformation
is performed on it. In the normalized BRDF, each scaled BRDF
value is considered as an observed density of the scattered photon
in a particular direction. In this work, we employed pair-copulae
constructions to model the normalized BRDF data.

3 Pair-Copula Constructions

A copula distribution is a multivariate distribution with uniformly
distributed U(0,1) marginals. Copula distributions can isolate the
description of the dependency structure of the joint distribution
from its marginal distributions. Based on Sklar’s theorem every
multivariate distribution can be written as

F(x1,x2, ...,xn) = C{F1(x1),F2(x2), ...,Fn(xn)}
= C(u1,u2, ...,un), (5)

where C is the cumulative copula distribution function, ui =
Fi(xi), i = 1,2, ...,n are the marginal distributions of joint distribu-
tion F [Nelsen 2006].

Joint density function f is given as:

f (x1,x2, ...,xn) = c1···n{F1(x1),F2(x2), ...,Fn(xn)}
n

∏
i=1

fi(xi), (6)

where c1···n is the copula pdf and fi(xi), i = 1,2, ...,n are the
marginal densities of joint pdf [Genest et al. 2009].

In this work, BRDF is considered as a joint density function of four
variables. These variables are explained in Section 4. It is shown
that BRDF can be factorized using a cascade of simple building
blocks called pair-copulae [Aas et al. 2009]. In this section, we
summarized their work for the sake of completeness.

The building blocks are based on the conditional independence.
This independence of a multivariate pdf f can be shown with the
following relationship:

f (x1,x2, ...,xn) = f (xn) f (xn−1|xn) · · · f (x1|x2, ...,xn). (7)

For example if a two-dimensional (2D) case is considered, the pdf
f (x1,x2) can be written as:

f (x1,x2) = f2(x2) f (x1|x2). (8)

If 2D pdf can be written in terms of copula density as,

f (x1,x2) = c12{F1(x1),F2(x2)} f1(x1) f2(x2), (9)

then the conditional pdf f (x1|x2) can be written as:

f (x1|x2) = c12{F1(x1),F2(x2)} f1(x1). (10)

The factorization of a 3D pdf is not trivial. More than one alter-
native decompositions of the 3D density function can be obtained.
The 3D pdf f (x1,x2,x3) can be expressed as

f (x1,x2,x3) = f3(x3) f (x2|x3) f (x1|x2,x3). (11)
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Figure 2: 2D cθd φd |θh
distributions of measured dark-red-paint material for various θh angles (red channel).

Here f (x1|x2,x3) can be written as:

f (x1|x2,x3) = c12|3{F(x1|x3),F(x2|x3)} f (x1|x3), (12)

or
f (x1|x2,x3) = c13|2{F(x1|x2),F(x3|x2)} f (x1|x2). (13)

Generalization of the conditional pdf and conditional distribution
functions using copula distribution can be made using the following
relationships, respectively,

f (x|v) = cxv j |v− j
{F(x|v− j),F(v j|v− j)} f (x|v− j), (14)

and

F(x|v) =
∂Cxv j |v− j

{F(x|v− j),F(v j|v− j)}
∂F(v j|v− j)

, (15)

where v is a n-dimensional vector of random variables X =
(X1,X2, ...,Xn), v j is one arbitrarily chosen component of v, v− j
denotes the v vector excluding v j component and the form F(x|v)
are the marginal conditional distributions.

An advantage of expressing distributions in terms of pair-copulae
is that some of the pairs can be ignored to simplify the underlying
representation. For example, if a 3D pdf f with random variables
X1,X2 and X3 is given, and X1,X3 are independent given that X2,
then c13|2{F(x1|x2),F(x3|x2)} = 1. Thus, the joint pdf can be ex-
pressed as:

f (x1,x2,x3) = c12{F1(x1),F2(x2)}c23{F2(x2),F3(x3)}
3

∏
i=1

fi(xi).

(16)

4 BRDF Representation Using Pair-Copula
Constructions

In this work isotropic measured BRDF data of Matusik et al. [2003]
is modeled using pair-copulae and wavelet decompositions. The
measured data is parameterized using the Rusinkiewicz [1998] co-
ordinate system. The Rusinkiewicz parameterization depends on

θh,φh,θd and φd . It is well-known that isotropic BRDF values are
independent of φh. Therefore the measured BRDF data of Matusik
et al. [2003] is represented as a function of three variables, namely
θh,θd and φd .

The measured BRDF data is sampled at 90,90,180 resolutions
for θh,θd and φd , respectively giving total of 90× 90× 180 =
1.458.000 samples per color channel (Red-Green-Blue). Each bin
is obtained at a dense grid with every δθh , δθd and δφd degrees
of spacing in the intervals 0◦ ≤ θh < 90◦, 0◦ ≤ θd < 90◦ and
0◦ ≤ φd < 180◦, respectively. Since we assume that the BRDF
ρ(ωi,ωo) can be viewed as a multivariate pdf, then we can treat
the measured BRDF values as the sampled densities after a simple
transformation on the measured BRDFs such that the volume of the
empirical density is equal to 1. The scaled BRDF bi jk is evaluated
with the following expression:

bi jk =
b∗i jk

K
, (17)

where b∗i jk is the measured BRDF with coordinates (i, j,k),
i = 1,2, ...,n, j = 1,2, ...,m and k = 1,2, ...,r, and K =
δθh δθd δφd ∑

n
i=1 ∑

m
j=1 ∑

r
k=1 b∗i jk is the scaling factor. The data ma-

trix for the normalized BRDFs is organized as follows

B = {bi jk,θ
(i)
h ,θ

( j)
d ,φ

(k)
d }, (18)

where the superscripts in the brackets stand for the bin number of
the corresponding angle.

After the scaling transformation, the normalized BRDF, bi jk can be
modeled in terms of pair-copulae as:

bi jk = fθh(θ
i
h) fθd (θ

j
d ) fφd (φ

k
d )cθhθd{Fθh(θ

i
h),Fθd (θ

j
d )}

cθhφd{Fθh(θ
i
h),Fφd (φ

k
d )}

cθd φd |θh
{F(θ

j
d |θ

i
h),F(φ k

d |θ
i
h)}, (19)

or

bi jk = fθh(θ
i
h) fθd (θ

j
d ) fφd (φ

k
d )cθd φd{Fθd (θ

j
d ),Fφd (φ

k
d )}

cθhθd{Fθh(θ
i
h),Fθd (θ

j
d )}

cφd θh|θd
{F(φ k

d |θ
j

d ),F(θ i
h|θ

j
d )}, (20)



or

bi jk = fθh(θ
i
h) fθd (θ

j
d ) fφd (φ

k
d )cθhφd{Fθh(θ

i
h),Fφd (φ

k
d )}

cθd φd{Fθd (θ
j

d ),Fφd (φ
k
d )}

cθhθd |φd
{F(θ

j
d |φ

k
d ),F(θ

j
d |φ

k
d )}. (21)

In Equation 19, the conditional copula distribution cθd φd |θh
is a 2D

distribution but it should be stored for each θh. Therefore storing
these distributions for BRDF representation will be inefficient. The
same data storage problem is valid for cφd θh|θd

in Equation 20 and
cθhθd |φd

in Equation 21. Since we would like to generalize the nota-
tion, we symbolize cθd φd |θh

, cφd θh|θd
, and cθhθd |φd

as cxy|z. Accord-
ingly, using uniformly distributed data corresponding to cxy|z will
improve compression ratios of the 3D data. The function values of
cxy|z are equal to 1 when x and y are independent [Aas et al. 2009].

For choosing the most appropriate expression out of three equations
in Equation 19, Equation 20 and Equation 21, first we represented
BRDF assuming that cxy|z = 1. Each measured BRDF data is then
approximated using all possible pair-copula decompositions and the
corresponding absolute error is evaluated. Our empirical results
showed that among the others cθd φd |θh

is approximately uniformly
distributed for almost all materials. These results indicate that θd
and φd are nearly independent for a given θh.

After choosing the most appropriate distribution, the contribution of
θh to the goodness-of-fit of the model is investigated. It is seen from
Figure 1 that sum of absolute errors between the estimated BRDFs
and measured BRDFs are greater in the (0,π/4) region than that of
the region (π/4,π/2).

In Figure 1, the 2D distributions cθd φd |θh
have the largest error val-

ues between the first 45 degrees of θh. Highest fitting errors were
observed for θh < 45◦ for most of the materials. After the 45 de-
grees the distribution are nearly similar. This situation can be seen
on Figure 2.

5 Estimation

Empirical marginal distributions are obtained from the normalized
data as follows:

f̂ i
θh

= bi.. =
89

∑
j=0

179

∑
k=0

bi jk, (22)

f̂ j
θd

= b. j. =
89

∑
i=0

179

∑
k=0

bi jk, (23)

f̂ k
φd

= b..k =
89

∑
i=0

89

∑
j=0

bi jk. (24)

Using the univariate marginal probability densities f̂θh , f̂θd

and f̂φd , the copula densities cθhθd{Fθh(θ
i
h),Fθd (θ

j
d )} and

cθhφd{Fθh(θ
i
h),Fφd (φ

k
d )} can be constructed using the following re-

lationships:

ĉθhθd =
f̂θhθd

f̂θh f̂θd

, (25)

where f̂θhθd is the marginal density evaluated as

f̂
θ i

hθ
j

d
=

179

∑
k=0

bi jk, (26)

(a)

(b)

Figure 3: Plots of red channel of measured BRDFs of dark-red-
paint against the estimated values based on pair-copula and wavelet
decomposition. (a) Fitted terms are evaluated using cθd φd |θh

as it is,
(b) Fitted terms are evaluated using cθd φd |θh

= 1.

and

ĉθhφd =
f̂θhφd

f̂θh f̂φd

, (27)

where f̂θhφd is the marginal density evaluated as

f̂
θ i

hφ k
d
=

89

∑
j=0

bi jk. (28)

The 2D ĉθhθd and ĉθhφd copula densities are estimated by employ-
ing the wavelet decomposition technique described in Genest et
al. [2009]. The Haar wavelets [Graps 1995] are used for decompo-
sition and only the low frequency details (approximation) are stored
in the second level with a compression ratio of 1/16.

The final step consists of decomposing the cθd φd |θh
copula density

given in Equation 19. The results of fitting with and without cθd φd |θh
term are shown in Figure 3. In this figure, the fitted BRDFs are
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Figure 4: Various spheres rendered with pair-copula and wavelet decomposition using different materials. Columns left to right: alum-bronze
(PSNR=39.63), blue-metallic-paint (PSNR=43.16), fruitwood-241 (PSNR=45.74), chrome-steel (PSNR=26.77), delrin (PSNR=39.38) and
yellow-matte-plastic (PSNR=37.66). Rows top to bottom: Reference images rendered using measured data; images rendered using pair-
copula and wavelet decomposition and difference false color images scaled by a factor of 1.5.

plotted against the measured BRDF values. As it is seen from Fig-
ure 3 that the fitting quality improved considerably when cθd φd |θh
term is included. Apparently inclusion of this term in the model
has a significant effect on the accuracy of the model. However a
compression with a high ratio can be achieved using low frequency
terms and higher levels of wavelet decomposition.

For each given θ i
h, the corresponding copula densities can be esti-

mated as:

ĉ
θ

j
d φ k

d |θ i
h
=

ĉ
θ

j
d φ k

d |θ i
h

f̂
θ

j
d |θ i

h
f̂
φ k

d |θ i
h

. (29)

In this work, these 2D densities are decomposed using the well-
known Daubechies wavelets [Graps 1995]. We used Daubechies-
4-tap wavelets to decompose the 2D densities. For each given θ i

h,
these 2D densities are decomposed into three levels and only the
approximation coefficients are stored with a compression ratio of
1/64.

For further compression, we looked at the errors for each given θ i
h.

As shown in Figure 1, the errors in the first half are greater than
the second half of entire region. It is seen from the Figure 2 that
bivariate distributions become very similar to each other, when θh
is greater than 40 degrees. We used this redundancy to improve the
compression ratio of BRDF data.

To render a color image at a given outgoing direction, we applied
the wavelet decomposition of the copula density to the normalized
mean values of measured BRDFs of the three color channels. Fol-
lowing a similar approach that was used by Ngan et al. [2005], we
estimated the diffuse and specular parameters for each pair of mea-
sured BRDF of each color channel and the approximated BRDF
values using a robust linear regression procedure [DuMouchel and
O’Brien 1989].

6 Importance Sampling

Importance sampling is a variance reduction technique in Monte
Carlo rendering. If the samples are chosen from the right BRDF dis-
tribution, the variance decreases significantly. Therefore sampling
of the BRDF distribution is an important issue in rendering [Jensen
et al. 2003].

In Monte Carlo rendering algorithms, outgoing radiance Lo(θo,φo)
is estimated using the following formula:

Lo(θo,φo) =
1
N

N

∑
s=1

Li(θs,φs)
ρ(θs,φs,θo,φo)cosθs sinθs

pi(θs,φs | θo,φo)
, (30)

where N is the number of samples, Li is the incoming radiance, ρ is
the BRDF described in Equation 1, ~ωs = {(θs,φs)} is the sampling
direction vector, and pi is the conditional distribution of θs and φs
given that θo and φo.

For our representation, deriving an efficient importance sampling
procedure is not trivial. Because our BRDF representation is based
on Rusinkiewicz [1998] coordinate system, and importance sam-
pling should be made in standard coordinate system. We could
generate samples in Rusinkiewicz [1998] coordinate system, and
transform them into standard coordinate system

pi(θi,φi | θo,φo) =
ph(θh,φh,θd ,φd)|J|

po(θo,φo)
, (31)

using the Jacobian (J) of the underlying change of variables if
we knew its proper value. However, calculation of the Jacobian
is not trivial. In Equation 31, ph is the 4D pdf described in
Rusinkiewicz [1998] coordinate system, pi is the 2D conditional
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Figure 5: The PSNR values of five BRDF representations for randomly selected 30 isotropic materials from MERL MIT database. The PSNR
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pdf, and po is the 2D pdf. Both pi and po are described in the
standard coordinate system.

In order to develop a sampling procedure, we can use the standard
coordinate system instead of Rusinkiewicz [1998] coordinate sys-
tem in the sampling function of our BRDF representation. Accord-
ing to that, we represent pi(θi,φi | θo,φo) as:

pi(θi,φi | θo,φo) =
ρ(θi,φi,θo,φo)

po(θo,φo)
, (32)

where ρ is the BRDF described in Equation 1, po is 2D pdf. Then,
we model ρ and po using pair-copula constructions and wavelet
transforms. The computational cost of this sampling procedure is
very expensive since generating incoming vectors from this 2D con-
ditional pdf is not efficient. On the other hand, for reducing time
required for Monte Carlo integration, some optimizations and ap-
proximations can be made to this sampling procedure and this sam-
pling function, respectively.

7 Results

We have tested our model on 30 randomly chosen measured
isotropic BRDF data from MERL MIT database [Matusik et al.
2003]. The results of the 6 materials are presented in Figure 4.
The renderings of spheres shown in Figure 4 are acquired using the
Physically Based Rendering Toolkit (PBRT) [Pharr and Humphreys
2004] using the direct illumination option.

It is seen from Figure 4 that pair-copula constructions [Aas et al.
2009] and wavelet transforms have provided images with a sat-
isfactory visual quality. We used Peak Signal to Noise Ratio

(PSNR) [Richardson 2002] for quantitative comparisons of ren-
dered spheres with the original rendered spheres. Higher PSNR
values indicate better approximations. As seen from Figure 4 that,
specular materials have lower PSNR values than those of diffuse
and glossy materials. This is possibly caused by the measurement
errors in these materials in the specular areas (θi > 80◦ or θo > 80◦
). This situation has also been reported by Ngan et al. [2005].

We have compared our model with various BRDF models, namely
Cook-Torrance BRDF model [Cook and Torrance 1981], Ed-
wards et al. BRDF model [Edwards et al. 2006], Ward BRDF
model [Ward 1992], and Bilgili et al. BRDF model [Bilgili et al.
2011]. The PSNR values of these BRDF models based on fittings
of 30 randomly selected measured BRDF data from MERL MIT
database [Matusik et al. 2003] are shown in Figure 5. It is seen from
Figure 5 that our model gives the highest PSNR values in 11 mate-
rials and it can be seen as a good alternative to represent isotropic
materials accurately.

Based on the data set [Matusik et al. 2003] we used, we need to
store 60.4 KB data for each material, which requires 33 MB storage
space. According to that, our compression technique compressed
the data up to about 1/600 of its original size. The results have
shown that, it is possible to model any multivariate distribution us-
ing the interactions between each pair of random variables. The
proposed technique also lends itself to identify the variables which
can be considered as approximately independent.

8 Conclusions and Future Work

In this paper, we introduced a compact technique to represent
BRDF data using pair-copula constructions and wavelet transforms.
Our technique also can be generalized for compression of data from



any multivariate distribution. To illustrate the quality of result-
ing approximations, we have rendered spheres for various isotropic
materials, and compared the proposed BRDF representation with a
number of well-known BRDF models. It is empirically shown that
the proposed technique has provided satisfactory results.

A major drawback of this approach is that the computational cost
of wavelet transforms depends on the level of decomposition. Al-
though high level compressions are satisfactory for most practical
applications, high quality renderings can be achieved only with low
compression ratios.

As a future work, it can be shown that this compression tech-
nique can be generalized to higher dimensional problems such as
Bidirectional Subsurface Scattering Reflection Distribution Func-
tions (BSSRDFs). We also would like to represent 4D measured
anisotropic BRDF data with our representation.
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