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Abstract
In this paper, we present a novel heterogeneous subsurface scattering (sss) representation, which is based on a combination
of Singular Value Decomposition (SVD) and genetic optimization techniques. To find the best transformation that is applied
to measured subsurface scattering data, we use a genetic optimization framework, which tries various transformations to the
measured heterogeneous subsurface scattering data to find the fittest one. After we apply the best transformation, we compactly
represent measured subsurface scattering data by separately applying the SVD per-color channel of the transformed profiles.
In order to get a compact and accurate representation, we apply the SVD on the model errors, iteratively. We validate our
approach on a range of optically thick, real-world translucent materials. It’s shown that our genetic algorithm based heteroge-
neous subsurface scattering representation achieves greater visual accuracy than alternative techniques for the same level of
compression.

Categories and Subject Descriptors (according to ACM CCS): I.3.7 [Computer Graphics]: Three-Dimensional Graphics and
Realism—Color, shading, shadowing, and texture

1. Introduction

In the field of computer graphics, photo-realistic representation
of optically thick, translucent materials requires modeling of the
Bidirectional Surface Scattering Distribution Function (BSSRDF),
which is a generalization of the Bidirectional Reflectance Distribu-
tion Function (BRDF) introduced by Nicodemus et al. [NRH∗77].
Wax, marble, human skin, and leaves are good examples of translu-
cent materials, and they exhibit complex light scattering behaviors
due to subsurface scattering. Optically thick, translucent materials
can be decomposed into two classes, namely homogeneous and het-
erogeneous. While optical properties of homogeneous translucent
materials are constant, heterogeneous translucent materials exhibit
spatially varying optical behaviors [Kur20]. Therefore, measur-
ing and modeling of heterogeneous translucent materials are much
more complicated than homogeneous translucent materials, and re-
quires much better understanding of light and material interactions
beneath the surface.

The diffusion equation is a well-known approximation tech-
nique, that is used to represent homogeneous translucent mate-
rials [FJB04]. The most of the homogeneous subsurface scatter-
ing models used in the computer graphics community are derived
based on this approximation [JMLH01, JB02, FHK14, JZJ∗15]. As
the optical properties of heterogeneous translucent materials ex-
hibit spatially varying distributions, measuring the optical proper-
ties of heterogeneous translucent materials results in the large data
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sizes [NK18, YTYM20, FJM∗20]. Therefore, a number of data-
driven subsurface scattering representations [PvBM∗06, STPP09,
KOP13, YTYM20, Kur20] have been proposed to represent mea-
sured heterogeneous subsurface scattering data, compactly and ac-
curately. But, it’s still an investigation issue to represent measured
heterogeneous subsurface scattering data compactly and physically
accurately.

To represent measured heterogeneous subsurface scattering data
compactly and accurately, we propose to use a combination of Ge-
netic Algorithm (GA) [Mit96] and Singular Value Decomposition
(SVD) [PSR13] techniques. We try various transformations to find
the best transformation by using our genetic optimization frame-
work. Our GA helps us to find the fittest transformation that is ap-
plied to the profiles of measured subsurface scattering data. Then,
we compress these transformed profiles by using a rank-1 approx-
imation of the SVD technique [PSR13]. We repeatedly apply the
rank-1 approximation on the model errors to achieve a compact and
accurate representation (see Algorithm 1). Our empirical results
show that our GA based subsurface scattering representation pro-
vides satisfactory approximations for the measured heterogeneous
subsurface scattering data.

2. Our Subsurface Scattering Representation

The general behavior of translucent materials is described by the
BSSRDF [NRH∗77] S(xi,

−→
ω i;xo,−→ω o), which is used to compute

an outgoing radiance Lo(xo,−→ω o) at a location xo in an outgoing
direction −→ω o. This computation can be separated into two com-
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Table 1: Properties of the genetic optimization for heterogeneous artificial stone. The table also summarizes some statistics of transforma-
tions applied by our genetic algorithm with K = 1. When we don’t apply any transformations, the rank-1 approximation of artificial stone
gives a RMSE of 0.10091.

Transformation Transformation expression Chromosome Population Fittest value
ID size (RMSE)

1 R′′d (xi,d) = ln
(

1+ R′
d (xi ,d)

αs

)
αs(R,G,B) 30 0.09694

2 R′′d (xi,d) = ln
(

αd +
R′

d (xi ,d)
αs

)
αd(intensity),αs(intensity) 20 0.09699

3 R′′d (xi,d) =

 R′d(xi,d)/max(R′d(xi,d)) i f range = 0

ln
(

1+ R′
d (xi ,d)

αsmax(R′
d (xi ,d))

)
otherwise

αs(R,G,B), d± range(R,G,B) 60 0.09340

Blue wax
Yellow wax

Marble (close up)

Chessboard (4 x 4) Jade

Artificial stone

Chessboard (8 x 8)

Densely veined marble

-3

-2.5

-2

-1.5

-1

ln
(R

M
S

E
)

SVD (K = 1)
SVD (K = 1) + Transformation ID:3 + GA
SVD (K = 1) + Transformation ID:3 + FMINCON

Figure 1: A comparison of the SVD based subsurface scattering
model with and without applying various optimization techniques
(see Table 1). The model parameter K was selected as 1. The error
values were sorted in the logarithmic RMSEs of the SVD technique
(purple) for visualization purposes.

ponents; a local component Ll(xo,−→ω o) and a global component
Lg(xo,−→ω o). The global component accounts for the light scatter-
ing within the material volume, and it can be represented using the
diffuse BSSRDF Sd(xi,

−→
ω i;xo,−→ω o), which can be further decom-

posed approximately [JMLH01, PvBM∗06, STPP09]:

Sd(xi,
−→
ω i;xo,−→ω o) =

1
π

Fi(xi,
−→
ω i)Rd(xi,xo)Fo(xo,−→ω o). (1)

In this work, we focus on representing Rd(xi,xo), which is
a four dimensional (4D) spatial subsurface scattering compo-
nent by neglecting other components (i.e., the local component
Ll(xo,−→ω o) and the directional dependent components Fo(xo,−→ω o)
and Fi(xi,

−→
ω i)) assuming light incoming from the surface normal.

To represent Rd(xi,xo) compactly, we linearize the measured 4D
input data to a two dimensional (2D) form, i.e., matrix. After that,
we reshape the subsurface scattering matrix Rd(xi,xo) by changing
the variables d = xo− xi to get R′d(xi,d), which can be further de-
composed instead of Rd(xi,xo) [PvBM∗06,KOP13,Kur20]. To find
the best transformation for measured R′d(xi,d) data, we try various
transformations using our GA to measured data sets from Peers et
al. [PvBM∗06] and Song et al. [STPP09]. The GA is a machine
learning technique for solving both constrained and unconstrained

optimization problems by imitating biological evolution processes
including natural selection [Mit96]. We apply GA to find new trans-
formations for real-world subsurface scattering. The key idea be-
hind a GA is that it repeatedly updates a population of individual
solutions, culling undesirable ones and allowing the fittest ones to
survive. A single such individual solution is referred to as a chro-
mosome, and each element of the chromosome is referred to as a
gene. At each step the algorithm selects solutions at random, from
the current population. These are treated as parents and the algo-
rithm uses these to produce children for the next generation. Over
successive generations, the population evolves toward an optimal
solution based on a fitness function.

Algorithm 1 presents our genetic objective function, used in our
genetic optimization framework. Algorithm 1 is used as an objec-
tive function in GA [Mit96] which is readily available in MATLAB
library. In Algorithm 1, the sum function returns the sum of the el-
ements if the input is a vector. If the input is a matrix, it returns
a row vector containing the sum of each column. The transOpt()
function applies a transformation operation to the input subsurface
scattering data based on transformation ID (see Table 1), and the
chromosome. The biological evolution of the chromosomes uses
the GA implementation in MATLAB with selection, crossover and
mutation operations. invTransOpt() applies an inverse transforma-
tion operation to the input data based on the transformation ID (see
Table 1), and the chromosome. To factorize subsurface scattering
data, Algorithm 1 uses SVDS [PSR13], also available in MATLAB.
In Algorithm 1, SVDS applies a rank-1 factorization to the trans-
formed subsurface scattering data. In Algorithm 1, we also use pow
and size functions available in MATLAB library.

To get meaningful results, we apply boundary constraints to the
values (i.e., genes) of the chromosomes thorough the GA, which al-
lows adding both upper and lower bounds to the genes of the chro-
mosome. We investigate various transformation and chromosome
combinations (see Table 1) thorough Algorithm 1 together with the
GA. Algorithm 2 reconstructs a subsurface scattering matrix using
two vectors ( f (xi),v(d)) and a scalar value (s). Algorithm 2 is em-
ployed by Algorithm 1. In our investigation, transformation ID:3 is
the fittest transformation, which can be seen in Table 1. We also ap-
plied both GA and FMINCON optimization techniques to find the
fittest transformation in Figure 1. These optimization techniques
are readily available in MATLAB library. On average, transforma-
tion ID:3 with GA and FMINCON decrease the RMSE by 3.835%,
and 1.973%, respectively. Therefore, we select and use transforma-
tion ID:3 with our GA framework.
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Our final subsurface scattering model will be the sum of the es-
timation of model errors and the first factorization of R′′d (xi,d),
which can be formalized as:

R′′d (xi,d)≈
K

∑
j=1

f j(xi)h j(d), (2)

K is the total number of terms, f j(xi) and h j(d) = s jv j(d) are the
univariate functions, which result in a very compact subsurface
scattering representation.

Algorithm 1: geneticObjective(R′d , K, ID, chromosome)

1: /*R′dr, R′dg and R′db are color components of R′d*/
2: let R′′dr = transOpt(R′dr, ID,chromosome)
3: let R′′dg = transOpt(R′dg, ID,chromosome)
4: let R′′db = transOpt(R′db, ID,chromosome)
5: let transSSSr = transSSSg = transSSSb = 0
6: let estR′dr = estR′dg = estR′db = 0
7: let sumr = sumg = sumb = f itness = 0
8: for j = 1 to K
9: [ fr j,sr j,vr j] = svds(R′′dr,1)
10: [ fg j,sg j,vg j] = svds(R′′dg,1)
11: [ fb j,sb j,vb j] = svds(R′′db,1)
12: R′′dr = R′′dr−genEvaluateSSS( fr j,sr j,vr j)
13: R′′dg = R′′dg−genEvaluateSSS( fg j,sg j,vg j)

14: R′′db = R′′db−genEvaluateSSS( fb j,sb j,vb j)
15: end for
16: for j = 1 to K
17: transSSSr = transSSSr+

genEvaluateSSS( fr j,sr j,vr j)
18: transSSSg = transSSSg+

genEvaluateSSS( fg j,sg j,vg j)
19: transSSSb = transSSSb+

genEvaluateSSS( fb j,sb j,vb j)
20: end for
21: estR′dr = invTransOpt(transSSSr, ID,chromosome)
22: estR′dg = invTransOpt(transSSSg, ID,chromosome)
23: estR′db = invTransOpt(transSSSb, ID,chromosome)
24: sumr = sum(sum(pow(R′dr− estR′dr,2)))
25: sumg = sum(sum(pow(R′dg− estR′dg,2)))
26: sumb = sum(sum(pow(R′db− estR′db,2)))
27: f itness = sqrt(1/(3∗ size(R′d ,1)∗ size(R′d ,2))∗

sum(sumr + sumg + sumb))
28: return f itness

Algorithm 2: genEvaluateSSS( f ,s,v)

1: let genSSS = 0
2: for i = 1 to size( f ,1)
3: for j = 1 to size(v,1)
4: genSSS(i, j) = f (i)∗ s∗ v( j)
5: end for
6: end for
7: return genSSS

3. Results

In this work, we validate our model on 8 different real-world
translucent materials. Table 2 gives an overview of the modeled

heterogeneous translucent materials and lists a number of statistics
for our model, based on typical values for K. We compare measured
and modeled subsurface responses of selected surface points in Fig-
ure 2 (upper row). We also compare measured and modeled sub-
surface models in Figure 2 (bottom row). The SubEdit [STPP09]
representation may show radially symmetric behavior at some ma-
terials (see blue wax in Figure 2), due to the parametrization used,
which may be insufficient for representing heterogeneous materials
accurately. The comparisons outlined show that our model repre-
sents heterogeneous translucent materials more accurately for com-
parable data storage requirements.

In this work, we present a GA based heterogeneous subsurface
scattering model. In the future, we plan to investigate real-time ren-
dering algorithms to implement our representation in screen-space.
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Table 2: Properties of the factored heterogeneous subsurface scattering materials. The table also summarizes some statistics of our GA
based subsurface scattering model with typically selected values for K.

Sample material Resolution Kernel Original K Factored CR RMSE
(pixel) size (pixel) size size

Chessboard (4×4) 277×277 39×39 2.61 GB 5 8.96 MB 1/298 0.0229
Chessboard (8×8) 222×222 39×39 1.68 GB 5 5.82 MB 1/296 0.0421
Marble (close up) 128×128 39×39 570 MB 5 2.05 MB 1/278 0.0268
Densely veined marble 213×211 39×39 1.53 GB 5 5.32 MB 1/295 0.0568
Artificial stone 108×108 35×35 327 MB 5 1.48 MB 1/222 0.0340
Blue wax 88×232 35×35 572 MB 5 2.48 MB 1/231 0.0192
Jade 260×260 35×35 1.85 GB 5 7.88 MB 1/240 0.0398
Yellow wax 110×110 39×39 421 MB 5 1.56 MB 1/270 0.0225
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Figure 2: A response comparison (upper row) and a visual com-
parison (bottom row) between the SubEdit model [STPP09] and
our model at comparable data sizes. We computed false-color dif-
ference images between measured data and corresponding approx-
imations of models. Note that for better comparison, false-color
differences were scaled by a factor of ten.
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