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Abstract  
The Phong model has been one of the oldest and the most popular reflection models in Computer Graphics. It 
can be used to model specular highlights of various materials. In this paper, we consider a polynomial model 
and obtain a linear approximation of the Blinn-Phong model. Approximation errors were obtained for the 
proposed model and empirical comparisons were made using a measured BRDF data set. Based on the 
empirical results, it is shown that proposed model provides visually convincing representation of BRDF and 
performs well for modeling the surface reflectance.  

Categories and Subject Descriptors (according to ACM CCS): I.3.7 [Computer Graphics]: Three-Dimensional 
Graphics and Realism 
 

 
 
 
1. Introduction 
 
Building a reflection model for generating photo realistic 
images is an important problem in computer graphics. 
Finding an appropriate model for the complete description 
of light and material interaction is essential for achieving a 
realistic simulation of surface reflectance. A simple way of 
making such a simulation is to use physical reflectance 
measurements. These measurements can be used to 
estimate parameters of the underlying model [MWL00]. 
 
    A class of functions called Bidirectional Reflectance 
Distribution Functions (BRDFs); have been used to model 
the relationship between the incoming and outgoing 
radiance. At a given surface point the amount of light 
reflected in the outgoing direction is a function of incoming 
light and the BRDF. For a single point light source the 
outgoing radiance is given by 
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where and are unit vectors of incoming and 
outgoing directions respectively, n is the surface normal 
and f is the BRDF [

iω oω

AH02]. 
 
    Various models have been proposed to represent BRDFs. 
Very popular among these models has been the Phong 
model [Pho75] which was originally introduced to model 
the effect of highlight in computer generated images. The 
specular term for the Phong model may be written as  
 

γσ )(I spec vr ⋅=                               (2)   
 

where σ  is  specular  coefficient,  γ  is  surface dependent 
constant that controls the sharpness of the specularity, v is 
the vector from the surface point to the viewer, and r is the 
reflection of incoming light vector l through normal vector 
n of the underlying surface. Using the angle between the 
normal vector and the halfway vector  
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Blinn [Bli77] introduced the following variation of the
original Phong Model 
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This model is computationally more convenient than the
model in (1) since it does not require computation of the 
reflection vector r.  
 
    Based on the equation (4) the relationship between the 
Blinn’s form of Phong highlighting model and the general 
BRDF lighting equation can be written as [Wyn00] 
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This model neither obeys the reciprocity nor the energy 
conserving properties of the BRDFs [Kau04].  
 
    When the BRDF function in (5) is substituted in (1), the 
term that is the cosine of the angle between the 
normal and incoming light direction cancels out. Therefore 
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the Blinn-Phong BRDF function in (5) essentially is a non-
linear function of ( ) only. For a given set of BRDF 
measurements of a certain material the corresponding 
parameters of the model can be estimated by using the least 
squares technique. However finding the optimal solution is 
not straightforward and non-linear least squares estimation 
requires using some optimization algorithms. The 
underlying estimation procedure suffers from stability 
problems because the algorithm may locate a local 
minimum which may not a global one and it depends on 
the choice of good initial values. 

hn ⋅

 
    In this paper, we approximate the Blinn-Phong model by 
a polynomial in single variable . The resulting 
model is linear in parameters and corresponding parameters 
can be estimated using standard multiple regression 
techniques. The proposed model avoids most of the 
problems associated with parameter estimation with the 
hope of better representation of BRDF measurements. 
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    In the next section we introduce the polynomial model as 
an approximation of the Blinn-Phong model, explain 
corresponding parameter estimation procedure and 
investigate the error introduced by polynomial 
approximation when the true model is assumed to be the 
Blinn-Phong model. Empirical results are presented in 
section 3. Section 4 is devoted for conclusions.  
 
2. Approximation of the Blinn-Phong model 
 
The Blinn-Phong BRDF model which is based on the sum 
of a diffuse term and a specular term can be written as  
 

γσμ )(f hn ⋅+=                            (6) 
 
where μ stands for the diffuse term and the second term is 
defined as in (4). The parameters μ  and σ are linear 
while γ is non-linear. Although the above model offers a 
simple functional form for representing BRDFs it 
encounters some problems in estimating the non-linear 
parameter γ . We proceed to approximate this model by 
employing a linear model. The proposed model is a 
polynomial of the form 
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where p,...,,, ββββ 210 are the linear parameters to be 
estimated,  p is  the  degree  of  the polynomial and 

. The parameter hn ⋅=x 0β  corresponds to the diffuse 
term μ  in the Blinn-Phong model. The accuracy of the 
proposed model depends on the choice of the degree of the 
polynomial. Naturally, approximation can be improved 
with the inclusion of additional terms in the model at the 
expense of creating some storage and computational 
problems in real life applications. Based on the predefined 
level of  approximation  error, the corresponding degree of 
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Figure 1. Approximations of the Blinn-Phong Model by 
polynomial models ( 2010 === γσμ ,, ). 
 
the polynomial can be determined in advance or by visual 
inspection of the images obtained from BRDF data. 
Approximations of the Blinn-Phong model with parameters 

2010 === γσμ ,,  by polynomials of various degrees 
are illustrated in Figure1. It is seen from the figure that the 
differences between the fitted and true models almost
indistinguishable when For polynomials of lower 
degrees, the corresponding maximum errors are observed at 
x=1.  

.6≥p

 
2.1. Parameter estimation  
 
Parameters of the Blinn-Phong model can be estimated by 
using non-linear least squares technique. One major 
problem with the estimation has been that the variances of 
BRDF measurements are not homogeneous as the BRDF
measurements obtained at grazing angles are prone to 
outliers [NDM05]. Appropriate weights must be used to 
stabilize variances and to reduce outlier effects on the 
parameter estimates. 
 
    For a fixed value of 0γγ = , the weighted least squares 
estimates of μ and σ can be obtained as 
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where and  are the weights and the 
measured BRDFs respectively, and . Using these 
results, the objective function for estimating the parameter 

iw ),...,2,1(, nif i =
hn ⋅=x

γ can be expressed as 
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Non-linear optimization algorithms may be used to obtain 
the estimate of .γ  
 
    Weighted least squares estimates of the parameters of the 
polynomial model in (7) can be obtained by a standard 
linear multiple regression technique. However, in our 
previous study [OKB06] we proposed using robust least 
squares approach for estimating parameters of multi-
variable polynomial models. In this study also we use a 
robust regression algorithm called bisquare weights. An 
advantage of using this approach is that the weights 
allocated to each data point depend on how far the 
observation is from the fitted curve. An outlier is given a 
zero weight while a point close to curve gets a full weight. 
 
2.2. Approximation error  
 
Obviously, the representational ability of a polynomial 
model is not bounded by the Blinn-Phong model. However,   
the bias  of  the approximation may be of interest in some 
practical applications when the true model is assumed to be 
a Blinn-Phong model. 
 
    The least squares estimate of the polynomial model in 
(7) can be expressed in matrix notation as 
 

βXˆf̂ =                             (10) 
 
where  X  is  an   matrix  whose  ith  row  

is  and  
Assuming that the true model is the Blinn-Phong model 
that is  then the square of the bias term 
corresponding to the ith observation for the model in (10) 
can be written as [
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Figure 2. Approximation error of the fitted polynomial 
model of degree p=4 when the true model is the Blinn-
Phong Model ( 10 == σμ , ).    
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Figure 3. Root mean squares of the fitted Blinn-Phong
model and the polynomial models of degree p=1, 2, …, 7. 
Top: Red, middle: Green, Bottom: Blue. 
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where X and xi are defined as in (10), is an  

matrix whose ith row is  and     

Note that the bias term depends on the parameters of the 
true model and the design matrix X.  

)( γx 2×n
)1()( γγ

i
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    Since the fitted and the true models are univariate
functions, the bias term essentially is a function of x only.  
Graphs of the bias term as a function of x for 

10 == σμ ,  and γ =5, 10, 20, 40 when the fitted model 
is a polynomial of degree 4 are shown in Figure 2. These 
results compare with those of Figure 1.  
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    A fair comparison scheme of the models should consider 
the real images and the generated images based on the 
polynomial approximation and the Blinn-Phong model. 
Using 205 BRDF measurements for each sample material 
we created test images by fitting Zernike polynomials of 
order 8 [KvDS96]. Images of spheres obtained using the 
polynomial models and the Blinn-Phong model are 
compared to that of the Zernike polynomials. 
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    Figure 3 shows the plots of the root mean squared errors 
based on the Blinn-Phong model and polynomial models of 
various degrees.  Results are obtained for each of the color 
channels, and the materials are sorted according to 
increasing root mean square errors of the corresponding 
fitted Blinn-Phong model. The bisquare weights technique 
in robustfit algorithm in MATLAB was used for fitting the 
polynomial models. It is seen from  the  figure  that  in 
more than in half of the cases the corresponding root mean 
squared errors of the fitted polynomial models are less than 
that of the Blinn-Phong model. One reason for such a result 
might be that no weighting was used for the nonlinear 
Blinn-Phong model. Another reason is that the polynomial 
models might provide better  representation  than  that of 
the Blinn-Phong model for the BRDF measurements of 
those materials.  
 
    A reference image of a sphere was obtained using 
Zernike polynomials and two created images of the same 
material that is orange peel based on the Blinn-Phong 
model and Polynomial model of degree p=4, 5, 6 and 7  are 
presented in Figure 4. The difference images were obtained 
by combining the corresponding difference images each of 
which were constructed by subtracting the test image from 
the created ones of each color channel. It is seen from the 
figure that the polynomial models generally provide better 
approximations to the reference image. However, the 
higher the degree of the polynomial the better the resulting 
approximation is observed. Similarly, images of the 
spheres were obtained for six different isotropic materials
and the corresponding renderings are displayed in Figure 5. 
In all cases the polynomial model of degree 7 provided 
better approximations of the test image.   

  
Figure 4. Comparison of the spheres obtained by using 
Zernike polynomials (top) and, the Blinn-Phong and 
polynomial models (Orange peel). Difference images were 
obtained by subtracting the reference image from those 
based on the corresponding models. 

    For a more detailed comparison, the peak signal-to-noise 
 
Table 1. PSNR values of images based on the Blinn -Phong 
model and polynomial model of degree 7 for different 
materials 

  
 PSNR  Values 

Blinn-Phong Polynomial (p=7) Material 
Red Green Blue Red Green Blue 

Orange P. 30,97 29,32 34,21 32,75 31,85 46,09 

Terry-cloth 29,60 30,38 34,06 37,74 39,02 44,03 

Velvet 32,50 40,05 61,87 40,71 50,04 ∞ 

Cork  27,86 30,37 31,28 30,63 35,44 42,36 

Rug_b 27,66 27,99 30,71 28,26 29,72 39,20 

Loofa 31,40 33,23 36,93 36,00 39,15 44,91 

Moss 27,78 27,84 37,59 32,59 33,22 45,89 

3. Results 
 
To conduct further evaluation of the proposed approach 
one needs to investigate how well the polynomial 
approximation performs on the measured BRDF data. In 
this study we have used the Columbia Utrecht Reflectance 
and Texture (CUReT) database which contains BRDFs of a 
variety of real world surface materials [CURe]. In this 
database, 205 BRDF measurements are provided for each 
of the sample material.  
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Figure 5. Spheres rendered using Zernike polynomials, the Blinn-Phong and the polynomial models and the corresponding 
difference images for different materials. 
 
ratio (PSNR) values were computed and presented in Table 
1 for each material used in Figures 4 and 5. Considering the 
six different materials, the results show that the PSNR 
values based on the polynomial model are uniformly higher 
than that of the Blinn-Phong model. We note that the blue 
channel images of the polynomial models are very close to 
those of the test images.     
 
    The Blinn-Phong model commonly is used to model 
specular highlights. In this study, the experimental results 
based on the CUReT data showed that the polynomial 
model provides better representation for BRDF than the 
Blinn-Phong model. To investigate the computational 
efficiency of the polynomial model, we generated artificial 
BRDF data using Blinn-Phong model in (6) with 
parameters 20 and10 === γσμ , . Uniformly spaced 

 values in the interval 0<x<1 were used for each 
sample of size n=1000, 2000, 5000 and 10.000. Levenberg-
Marquardt (fsolve) and robustfit algorithms in MATLAB 

were used to estimate the parameters of the Blinn-Phong 
model and the polynomial models respectively. The 
relative execution times of the polynomial models to the 
Blinn-Phong model were obtained on a Pentium 4 PC and 
presented in Table 

hn ⋅=x

2. It is seen from the table that the 
execution times of the polynomial model are shorter than 
that of the Blinn-Phong model for all cases. It is interesting 
to note that in an extreme case when the degree of the 
polynomial is p=10 and the sample size is n=10.000, the 
corresponding estimation procedure of the polynomial 
model is about 5 times faster than its competitor. 
 
    The Blinn-Phong model in (6) has a simple closed form. 
For a given set of parameters, the corresponding BRDF 
value can be computed easily. However, the computational 
cost of this model as compared with a linear model may be 
higher because of its exponential term.  To investigate this 
issue we evaluated 100.000 BRDF values from (6) at a 
fixed point  and measured  the total  execution  time 0xx =
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Table 2. Relative execution times for polynomial model of 
various degrees and sample sizes. 
 

 n=1000 n=2000 n=5000 n=10000 
p=1 3.29 7.27 10.52 15.82 
p=2 3.28 7.27 11.43 17.61 
p=3 2.56 6.67 9.74 15.20 
p=4 2.56 5.72 8.77 12.12 
p=5 2.56 4.71 7.51 10.62 
p=6 1.92 4.21 6.74 9.69 
p=7 1.92 4.00 6.12 8.71 
p=8 1.64 3.48 4.70 6.80 
p=9 1.35 3.20 4.78 6.15 

p=10 1.35 2.96 4.31 5.62 
 
 
Table 3. Relative execution times for evaluating models in 
(6) and (7) at point x=0.5. 
 

p=1 173.90 p=6 8.02 
p=2 132.83 p=7 7.09 
p=3 95.14 p=8 5.54 
p=4 13.03 p=9 4.28 
p=5 9.92 p=10 3.49 

 
of this process.  The polynomial model in (7) first was 
expressed by Horner’s rule [CLRS01] as 
 

))((( 01020100 LL pp βxβxβxβxβf ++++= −  (12) 
 
and then evaluated in a similar fashion. The corresponding 
relative execution times are presented in Table 3 for 
polynomials of various degrees. The results show that the 
polynomial models considered in this comparison are 
always faster than the Blinn-Phong model. In a typical 
application when a polynomial model of degree 5 is used 
then the speed of evaluation of this model will be about 10 
times faster than that of the Blinn-Phong model. These 
empirical results suggest that the polynomial models 
provide an important advantage for real-time applications. 
 
4. Conclusions 
 
In this paper we have approximated the Blinn-Phong model 
by a polynomial model of degree p. It is shown that the 
polynomial model provides satisfactory approximation of 
the Blinn-Phong model. However, the Blinn-Phong model 
is an empirical model and used to approximate the surface 
reflectance. In this sense, the proposed linear model can be 
considered independently as an approximation model of the 
surface reflectance. Using a BRDF test data, renderings 
based on the underlying models were obtained. For a 
number of materials, experimental results suggest that the 

polynomial models of degree greater than 5 perform well 
for modeling the surface reflectance.  
 
    The proposed model is linear in parameters and the 
corresponding parameters can be estimated easily by using 
standard regression procedures. The polynomial model is 
faster than the Blinn-Phong model both in the parameter 
estimation and in the model evaluation. Our final 
conclusion is that not only can the underlying model be 
used to approximate the Blinn-Phong model but also can be 
implemented independently to model the surface 
reflectance for certain class of applications. The quality of 
the simulated images obtained by the proposed approach 
can be improved, at the expense of storing additional 
parameter estimates.  
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