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Abstract
In this paper, we introduce a novel approach for modeling surface reflection. We focus on using a family of
probability distributions called Archimedean copulas as BRDF models. The Archimedean representation has an
attractive property in that the multivariate distributions are characterized by their marginal distributions through
a single univariate function only. It is shown that the proposed model meets the reciprocity property of reflection.
Based on measured BRDF data, we demonstrate that the proposed approach provides a good approximation to
BRDF. Empirical comparisons are made with some classically used BRDF models.
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1. Introduction

The Bidirectional Reflectance Distribution Function (BRDF)
describes the surface reflectance of a material [NRH∗77]. It
is defined in terms of incoming and outgoing radiances by
the following expression:

Lo(ωo) =
∫

�

Li(ωi )ρ(ωi ,ωo)(ωi · n)dωi , (1)

where Lo and Li are the outgoing and incoming radiances;
ωo and ωi are the corresponding direction vectors, respec-
tively; ρ(ωi , ωo) is the BRDF; n is the normal vector; and �

represents the hemisphere of incoming light directions.

In the aforementioned equation, it is difficult to formulate
an exact mathematical expression for the BRDF ρ(ωi , ωo) of
a given realistic material. However, a wide range of BRDF
models with varying degrees of complexity have been pro-
posed to approximate surface reflectance. Some of these
models are designed to represent the reciprocity and energy-
conserving properties of reflection. Some other models are
phenomenological, that is, their certain features of reflection
are described by choosing appropriate functions. Another

approach for describing surface reflectance is to measure
the BRDF of real materials and fit a known model to this
data.

The energy conserving property of an ideal BRDF dictates
that for every outgoing light direction∫

�

ρ(ωi , ωo)(ωi · n)dωi ≤ 1. (2)

For a given direction ωo the function

f (ωi , ωo) = ρ(ωi , ωo)(ωi · n), (3)

can be viewed as a multivariate probability density function
(pdf) if the BRDF satisfies the equality in the aforemen-
tioned equation. Edwards et al. [EBJ∗06] presented a method
based on representing halfway vector distributions in two-
dimensional (2D) domains to enforce energy conservation in
a BRDF.

Since 0 ≤ (ωi · n) ≤ 1, the inequality in Equation (2) still
holds when the BRDF function ρ(ωi , ωo) can be treated as a
pdf. In this paper, we use a scaling factor for the measured
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BRDF which allows us to treat the corresponding model in
the context of multivariate probability distributions. Thus an
appropriate probability distribution can be employed as a
BRDF model for which reciprocity property of reflection is
satisfied. Based on this consideration, the function ρ(ωi , ωo)
can be viewed as a four-dimensional (4D) multivariate pdf
when the direction vectors are defined in terms of the standard
spherical coordinates that is ωo = (θo, φo) and ωi = (θi, φi)
where θ and φ represent the elevation and the azimuth angles,
respectively. In this case, the elevation and the azimuth angles
for incident and reflection directions are considered to be
random variables and the corresponding BRDF as the joint
pdf of these random variables. Clearly any representation,
such as the one based on the halfway vector instead of the
standard spherical coordinates, can also be used to define
the underlying multivariate distribution [Rus98, APS00]. If
the joint distribution of the random variables to be considered
were known, then the problem of describing the BRDF of a
given material would consist of estimating the parameters of
the corresponding distribution.

The best known and most important multivariate distri-
bution is the multivariate normal distribution (MVN). An
attractive property of the MVN distribution is that it can
be fully characterized by the marginal distributions and the
correlation coefficients between any two random variables.
Some other multivariate distributions also have been de-
rived from the MVN distribution. The normal distribution
has been used in the modeling of reflectance [CT81, War92,
APS00]. A major disadvantage of using MVN for modeling
BRDF is that each marginal distribution has to be a normal
distribution.

Various families of multivariate distributions have been de-
veloped for certain applications where the MVN distribution
does not provide a satisfactory approximation. Application
of these distributions is limited by the lack of generality
that a different family is required for each set of marginal
distributions.

An interesting approach to constructing multivariate dis-
tributions with a number of attractive properties is based
on the so-called copula function. The copula approach is
a modeling strategy where a joint distribution function is
defined through a function, namely a copula, by specifying
marginal distributions. In other words, it is a function that
links the marginal distributions to their complete multivariate
distribution. The copula representation not only maintains the
dependence structure of the random variables, thereby cap-
turing all of the joint behavior, but also provides great flexi-
bility through the margins.

A main result based on Sklar’s theorem [Nel06] is that if
the marginal distributions are continuous then there exists a
unique copula representation for a p-dimensional multivari-
ate distribution. In this sense, the copulas provide a unifying
approach to modeling surface reflection.

Although the copula approach is a relatively new method,
there has been a rapidly growing interest in various fields
including econometrics, finance and actuaries [FV98].

In this paper, we introduce a BRDF representation based
on copula functions. We focus on using a family of copulas
called Archimedean copulas. The Archimedean representa-
tion has an attractive property in that it characterizes the
multivariate copula through a single univariate function only.

It is shown that the proposed model meets the reciprocity
property of reflection. Based on the emprical results, it is
also shown that the Frank copula distribution, a member of
the Archimedean family, provided the best approximation to
measured BRDF data.

The next section gives a review of previous work. In
Section 3, Archimedean copulas are presented, and in
Section 4, approximating BRDF models by copula mod-
els are described. Section 5 describes procedures of model
estimation. In Section 6, properties of the proposed model
are discussed. Importance sampling is discussed in Section 7,
and some empirical results are presented in Section 8. Finally,
Section 9 is devoted for conclusions and future work.

2. Previous Work

BRDF models have received significant attention over
the past decades in generating photo-realistic images. A
wide range of models with varying degrees of complexity
have been proposed to approximate surface reflectance.
These models can be classified in three main groups: empir-
ical models, physically-based models, and models based on
linear combinations of some sets of basis functions [WLT04].

The most well known and the oldest empirical models de-
veloped to simulate the effects of the specular reflection are
the Phong model [Pho75] and improved Phong model known
as Blinn-Phong model [Bli77]. Ward [War92] introduced a
simple formula to describe the isotropic and anisotropic re-
flectance distributions and fitted it to measured BRDF data.
The Lafortune model [LFTG97] can be considered as a gen-
eralization of the Phong model, which can also represent
a number of reflection properties such as non-Lambertian
diffuse reflection, retro-reflection and Fresnel effect. Other
empirical models include the models by Lewis [Lew94] and
by Westlund and Meyer [WM01].

Physically based models mainly have been developed to
simulate the reflectance properties for specular surfaces. The
Torrance-Sparrow [TS67] and Cook-Torrance [CT81] mod-
els are the earliest models introduced in this category.

Assuming that the surface is composed of some mi-
crofacets, the Cook-Torrance model was designed to
capture the reflectance properties of such surfaces. The Oren-
Nayar model [ON94] was developed to approximate rough
surfaces such as unglazed ceramics. A comprehensive but
complicated model based on wave optics was introduced by
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He-Torrance-Sillion-Greenberg [HTSG91]. Reflection mod-
els focusing on anisotropic materials also have been devel-
oped by Kajiya [Kaj85], Poulin and Fournier [PF90] and
Ashikhmin et al. [APS00].

Approximating a continuous function by a linear combi-
nation of some set of basis functions is a widely used tech-
nique. Westin et al. [WAT92] have used spherical harmonics
to represent BRDFs. As an alternative to employing spher-
ical harmonics, Koendering et al. [KvDS96] used Zernike
polynomials in a similar fashion to approximate BRDFs.
Both the spherical harmonics and the Zernike polynomials
require large numbers of basis functions to obtain accurate
approximations, therefore the corresponding computational
costs are high [Rus98]. Wavelets have also been used as basis
functions for approximating BRDFs [SS95, KM99]. Matusik
et al. [MPBM03] used principal component of the measured
BRDF data as a basis function for BRDF representation.
This class of linear representations provides good approxi-
mations to BRDF at the expense of involving large numbers
of parameters. Using the response surface techniques, Ozturk
et al. [OKBG08] presented an approach based on principal
component transformations of some explanatory variables
for approximating both isotropic and anisotropic reflectance
for diffuse and glossy surfaces.

A natural way of modeling the surface reflection is to treat
the BRDF in the context of probability theory. However,
creating a 4D pdf to represent quickly-varying BRDFs accu-
rately is difficult. Lawrence et al. [LRR04] decomposed the
4D function f (ωi , ωo) in Equation (3) into the sum of 2D
functions such that one of the functions depends on ωo and the
other function depends on the halfway direction. For a given
outgoing direction vector ωo the second function further is
factored into univariate pdfs. Based on this decomposition
they have developed a general importance sampling algo-
rithm. Similarly, using singular value decomposition separa-
bility of BRDF has been investigated by Fournier [Fou95]
and Wang et al. [WTL04]. Using homomorphic factorization
McCool et al. [MAA01] factorized BRDF into three 2D func-
tions. Viewing the function f (ωi , ωo) as a pdf and assuming
the outgoing direction vector ωo is known, Edwards et al.
[EBJ∗06] developed a new energy-conserving BRDF model
which reflects many different reflectance effects.

3. Archimedean Copulas

In this section we give a brief description of Archimedean
copulas. For an introduction to the theory of copulas we refer
to [Nel06] and reviews to [WVS07].

A copula is defined to be a multivariate cumulative
distribution function of the uniform random variables on
the interval [0,1]. Suppose that the random variables
(X1, X2, . . . , Xp) have a joint cumulative distribution func-
tion F (x1, x2, . . . , xp) with marginal distribution functions
F1(x1), F2(x2), . . . , Fp(xp), respectively. It is well known

that the random variables Ui = Fi(xi), i = 1, 2, . . . , p are
uniformly distributed on the interval [0,1]. No assumption is
made about their independency. According to Sklar’s theo-
rem there exists a copula function C such that

C(F1(x1), F2(x2), . . . , Fp(xp)) = C(u1, u2, . . . , up)

= F (x1, x2, . . . , xp),
(4)

and, if the marginal distributions are continuous, then C is
unique.

Copulas provide a general method for constructing mul-
tivariate distributions. As may be seen from the aforemen-
tioned equation, a copula separates the information on the
marginal distributions and the information on the dependence
from each other. A main advantage using a copula model is
that the marginal distributions can be chosen independently
after an appropriate copula model is selected to represent
dependency between the variables.

The Archimedean family of copula distributions are de-
fined by the distribution function

C(u1, u2, . . . , up) = ψ−1{ψ(u1) + ψ(u2) + · · · + ψ(up)},
(5)

where the function ψ called generator, is a convex, decreas-
ing function on the interval [0,1], and the inverse function
ψ−1 defined by the Laplace transform of a random vari-
able X that is ψ−1(s) = EX{exp(−sX)}, s > 0, where EX is
the expected value operator on the random variable X. For
each choice of the generator, a different family of copulas
is obtained. For example, the Frank family of distributions
is generated from the following Laplace transform of the
random variable X from the logarithmic series distribution:

ψ−1(s) = α−1 ln[1 + exp(s)(exp(α) − 1)], α �= 0, (6)

for which the inverse solution is

ψ(t) = ln
exp(αt) − 1

exp(α) − 1
. (7)

A wide range of Archimedean family copula distributions
has been developed. For a large selection of copula models
we refer to [Joe97, Nel06]. Based on the Sklar theorem and
Equation (4) it is clear that the copula distribution C and
the marginal distributions F1, F2, . . . , Fp can be uniquely
determined when the joint distribution function F is known.
Conversely, a valid model can be constructed from a given
parametric family of marginal distributions and a copula dis-
tribution [GF07]. A major advantage of this approach is that
the marginal distributions are chosen independently and the
dependence between the random variables is established by
the copula function. For example, choosing the marginal dis-
tributions F1 and F2 as normal with parameters (μ, σ 2) and
exponential with parameter λ, respectively, and the copula
distribution from the Frank family, a bivariate distribution
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can be defined as

F (x1, x2) = C(u1, u2)

= ψ−1

{
ln

exp(αu1) − 1

exp(α) − 1
+ ln

exp(αu2) − 1

exp(α) − 1

}

= α−1 ln

[
1 + (exp(αu1) − 1)(exp(αu2) − 1)

exp(α) − 1

]
,

α �= 0, (8)

where u1 = F (x1), u2 = F (x2) and α is the parameter of
the copula distribution. The corresponding pdf can also be
obtained by taking the second partial derivatives of F with
respect to x1 and x2 as

p(x1, x2) = ∂F (x1, x2)/∂x1∂x2

= αg1(1 + gu1+u2 )

(g1 + gu1gu2 )2

2∏
j=1

fj (xj ),
(9)

where gt = eαt − 1 and f1, f2 are the corresponding
marginal pdfs.

4. Approximating the BRDFs by Archimedean Copulas

We now explain how the BRDF is approximated by a copula
distribution. As was stated in the previous section, the func-
tion ρ(ωi ,ωo) can be viewed as a multivariate pdf. In this
work, we propose to approximate ρ(ωi , ωo) by choosing an
appropriate Archimedean family of copula distributions.

Since we assume that the density function ρ(ωi , ωo) can be
viewed as a multivariate pdf, then we can treat the measured
BRDF values as the sampled densities after a simple trans-
formation on the measured BRDFs such that the volume of
the empirical density integrates to 1. For example, when the
standard spherical coordinates are used to define the vectors
ωi and ωo as explained in Section 1 and uniform spacing with
unit intervals is used for the elevation and azimuth angles,
namely θ and φ in the sampling process, the corresponding
normalizing factor simply is the sum of all measured BRDFs.
Hence the normalized BRDFs are considered to be the proba-
bility densities of a continuous distribution sampled at certain
fixed points. Clearly, using this sample of densities an appro-

priate copula distribution from the Archimedean family can
be fitted to approximate the corresponding “true” BRDF.

In this paper we consider that the BRDF is a 4D function
that is

ρ(ωi , ωo) = ρ(θi, φi, θo, φo). (10)

In a typical application the outgoing direction ωo = (θo, φo)
is assumed to be known. In this case the BRDF becomes a
bivariate function of only θi and φi . However, a number of
representations including the ones based on the half-angle
vector

h = ωi + ωo

‖ωi + ωo‖ , (11)

have been reported to yield more visually plausible results
than BRDFs based on the incident vector defined in stan-
dard spherical coordinates [Rus98, APS00, SAS05, EBJ∗06].
For example, if a representation proposed by Rusinkiewicz
[Rus98] is chosen instead of the usual parameterization in
terms of angles of incidence and reflection, then the halfway
vector h = (θh, φh) and the difference vector d = (θd, φd ) can
be used in the pdf function in Equation (10) instead of the
spherical coordinates for ωi and ωo. It is noted that isotropic
BRDFs are independent of φh in this coordinate system and
the corresponding joint distribution can be represented by a
three-variate pdf. The proposed approach based on 4D cop-
ula distributions also can be used for modeling anisotropic
BRDFs in a straightforward way. Generally, dimension of a
copula is determined depending on the nature of the problem
studied. For example, if the wavelength is also considered
for describing BRDF then an additional dimension to account
for this new factor should be considered in the corresponding
copula model.

Let F1(θh), F2(θd ) and F3(φd ) denote the marginal cumu-
lative distribution functions based on the representation pro-
posed by Rusinkiewicz [Rus98] for an isotropic BRDF. Em-
prical marginal cumulative distributions of the intensites for
a number of isotropic BRDFs are illustrated in Figure 1.
Let also f1(θh), f2(θd ) and f3(φd ) denote the correspond-
ing marginal density functions. A full BRDF model that we
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Figure 1: Emprical marginal cumulative distribution of θh, θd and φd for various materials.
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employ in this paper can be expressed as

ρ(θh, θd , φd ) = Kc(u1, u2, u3)f1(θh)f2(θd )f3(φd ), (12)

where u1 = F1(θh), u2 = F2(θd ), u3 = F3(φd ), c is a three-
dimensional (3D) copula pdf and K is the scaling parameter.
The parameter(s) of the copula distribution and marginal den-
sity functions usually are unknown and should be estimated
from the measured BRDF data. When the Frank copula is
used to represent an isotropic BRDF the corresponding pdf
can be easily obtained by extending bivariate pdf to a 3D pdf
in Equation (9) as

p(x) = α2g2
1(1 + gu1+u2+u3 )

g2
1 − gu1gu2gu3(

g2
1 + gu1gu2gu3

)3

3∏
j=1

fj (xj ),

(13)

where x = (x1, x2, x3) = (θh, θd , φd ), gt = eαt − 1 and
f1, f2, f3 are the marginal pdfs of θh, θd , φd , respectively.

Note that the Frank copula has only one unknown
parameter.

5. Estimation

In this section, we explain the estimation procedure of a
copula model for isotropic BRDF using the half-angle pa-
rameterization of Rusinkiewicz. Extension of the proposed
approach for other parameterizations and for anisotropic case
can be made in a similar way.

We first define our sample which is used for estimating
the proposed copula model. Suppose that a measured BRDF
data is obtained at a dense grid with every δθh

, δθd
and δφd

degrees of spacing in the intervals 0 ≤ θh < 90, 0 ≤ θd <

90 and 0 ≤ φd < 180, respectively. The number of samples
taken along θh, θd and φd directions are n = 90/δθh

, m =
90/δθd

and r = 180/δφd
, respectively, giving a total number

of data points of 90 × 90 × 180/(δθh
δθd

δφd
). It is easy to

see that, when a uniform spacing with unit length of 1◦ in
all directions is used, then the total number of bins will be
90 × 90 × 180 = 1, 458, 000 [MPBM03].

Next we normalize the BRDFs measured at each bin as

bijk = b∗
ijk

K
, (14)

where b∗
ijk is the measured BRDF at a bin whose co-

ordinates are (i, j , k), i = 1, 2, . . . , n; j = 1, 2, . . . , m; k =
1, 2, . . . , r and K = δθh

δθd
δφd

∑n

i=1

∑m

j=1

∑r

k=1 b∗
ijk is the

scaling factor. The data matrix for the normalized BRDFs is
organized as follows

D = {
bijk, θ

(i)
h , θ

(j )
d , φ

(k)
d

}
, (15)

where the superscripts in the brackets stand for the bin num-
ber of the corresponding angle.

We express the copula pdf c given in Equation (12) with a
single parameter α for the aforementioned data set as

c(u1, u2, u3; α) = c(F1(θh), F2(θd ), F3(φd ); α), (16)

where F1, F2 and F3 are the cumulative marginal distribu-
tion functions of θh, θd and φd , respectively. In this model
the parameter α of the given copula pdf and the marginal
distributions are unknown and have to be estimated from the
sample.

Various strategies have been proposed for parameter es-
timations of copula distributions. Rank-based nonparamet-
ric estimators, including the inversions of Kendall’s tau and
Spearman’s rho, are the well known estimators although there
has been no complete consensus in the statistical commu-
nity about them [GF07]. A popular approach referred to as
the inference from margins (IFS) proposed by Joe [Joe97]
employs the two-step maximum likelihood (ML) estimation
procedure. ML estimates of the parameters of the marginal
distributions are obtained from the sample first and then the
log-likelihood function is maximized with respect to the de-
pendence parameter α.

However, neither of these methods can be used directly
when the random sample consists of the BRDF data because
it differs from a standard random sample. As explained afore-
mentioned, BRDF measurements are obtained at fixed points
and they are scaled so that the resulting sample represents the
density function values evaluated at these fixed points. There-
fore the problem of estimating a three-dimensional probabil-
ity distribution is reduced to a standard least squares estima-
tion problem.

We propose to use a modification of the IFS method for
parameter estimation of the copula distribution for this spe-
cial case. First, we obtain empirical estimates of the marginal
distributions from the BRDF sample and retrieve the required
function value whenever needed. Linear interpolation tech-
niques are used to determine the quantiles of the empirical
distributions. Then the estimate of α is obtained through the
minimization of the objective function of the form

S(α) =
n∑

i=1

m∑
j=1

r∑
k=1

{
bijk − c

(
F

(i)
1 , F

(j )
2 , F

(k)
3 ; α

)
f

(i)
1 f

(j )
2 f

(k)
3

}2

(17)

where f
(i)

1 = ∑m

j=1

∑r

k=1 bijk, f
(j )

2 = ∑n

i=1

∑r

k=1 bijk,

f
(k)

3 = ∑n

i=1

∑m

j=1 bijk and F1, F2, F3 are the corre-
sponding estimates of the cumulative marginal distribution
functions of θh, θd and φd , respectively.

It is noted that after the marginal distributions are esti-
mated, a standard non-linear least squares estimation tech-
nique can be used to obtain the estimate of α.

A pseudo-code for our proposed estimation procedure
based on Rusinkiewicz parameterization for isotropic BRDFs
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is presented in the Appendix (Algorithm 1, Algorithm 2 and
Algorithm 3).

6. Properties of the Model

The reciprocity and the conservation of energy are two im-
portant properties of an ideal BRDF. Generally, it is difficult
to construct a general purpose BRDF model based on a closed
form of a mathematical expression that satisfies both the reci-
procity and energy conservation properties. However, most
BRDF models that have been used to simulate reflectance of
a material violate at least reciprocity or energy conservation
[EBJ∗06]. Our copula model satisfies only the reciprocity
property of BRDF for the two representations, namely the
standard spherical coordinate system and the Rusinkiewicz
system. Reciprocity is expressed by the equation

ρ(ωi , ωo) = ρ(ωo, ωi ). (18)

Formally, an Archimedean copula distribution is defined
by Equation (5). It is clear from this expression that the dis-
tribution function ψ−1(·) is independent of the ordering of its
arguments, that is, the function value is not changed when the
direction vectors ωo and ωi defined in standard spherical co-
ordinates is interchanged. If the variables based on half-angle
parameterization of Rusinkiewicz is used, then interchang-
ing ωo and ωi will not satisfy the reciprocity property unless
the underlying system is enforced by the following simple
translation for φd [Rus98]

φd = φd + π. (19)

Therefore the proposed model can be considered to be
reciprocal provided that the above transformation is used.

7. Importance Sampling

Importance sampling is a variance reduction technique and
it is well studied (see, e.g. [JAD∗03]).

For our representation, deriving an exact distribution is
not straightforward. Based on Equation (1), the incident il-
lumination can be expressed in terms of 4D original BRDF
by

Lo(θo, φo) =
∫ 2π

0

∫ π/2

0
Li(θi, φi)ρ(θi, φi, θo, φo) cos θidωi,

(20)

where dωi = sin θidθidφi [War92]. Let T denote a transfor-
mation between the original BRDF and the new representa-
tion denoted by (θh, φh, θd , φd ). The distribution can be
expressed in terms of the new representation by

h(θi, φi, θo, φo) = g(θh, φh, θd , φd )|J |, (21)

where J is the Jacobian of the underlying change of variables.
Conditional distribution of θi and φi given that θo and φo is

given by

f (θi, φi |θo, φo) = g(θh, φh, θd , φd )|J |
p(θo, φo)

, (22)

where p is the bivariate marginal pdf of θo and φo. Based
on this definition, the Monte Carlo estimator for the incident
illumination integral can be written as

1

n

∑
Li(θi, φi)

ρ(θi, φi, θo, φo) cos θi sin θi

f (θi, φi |θo, φo)
. (23)

In order to develop a sampling procedure, we need to gener-
ate incident vector ωi = (θi, φi) for a given outgoing direc-
tion vector ωo = (θo, φo), from the distribution f . Standard
random variate generation techniques such as the rejection
method can be employed to generate incident vectors. 2D
and 4D Frank copula can be used for approximating the dis-
tributions f and g, respectively.

The computational cost of the above random vector gen-
eration procedure is very expensive since generating random
variates from the distribution f is not easy. However, some
approximations can be made to simplify the corresponding
functions and reduce the time required for the Monte Carlo
integration.

8. Results

To investigate some empirical properties of the proposed
model, we have used a data set based on 30 isotropic mate-
rials acquired by Matusik et al. [MPBM03] from the MERL
MIT database. These samples were chosen to represent a
wide range of materials with different diffuse and specular
reflection properties. Some materials displaying extreme re-
flection properties such as chrome-steel, which is known to
be the most specular, and fruitwood-241, which present some
non-standard behavior, also were included in the data set. Us-
ing half-angle parameterization of Rusinkiewicz, the BRDF
measurements were provided in 3D angular space defined by
the vector (θh, θd , φd ). 1,458,000 BRDF measurements based
on uniform spacing with unit length of 1◦ in all directions
were obtained for each sample material and for each color
channel.

Examination of sample data showed that the marginal dis-
tribution of θh is extremely skewed, especially for specular
materials. This situation is demonstrated for chrome-steel,
nickel and yellow-matte-plastic in Figure 1. Our empirical
results have shown that copula distributions do not provide
satisfactory approximations when marginal distributions are
extremely skewed. This situation was observed mostly for
specular BRDFs. For these kinds of extremely skewed cases
an optimal subdivision of the BRDF sample could be made
to improve the accuracy of the copula approximation. It is
noted in Figure 1 that the distribution of φd is approximately
uniform. Therefore, the conditional joint distribution of θh

and φd given that θd will be dominated by the marginal
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Figure 2: Plots of measured BRDFs of blue-metallic-
paint against the estimated values based on Frank copula
distribution.

distribution of θh. Dividing the BRDF sample into slices
along the angle θd and fitting a copula distribution to each of
these slices (sub-samples) should reduce the approximation
error at the expense of increasing the computational cost.
For practical considerations we divided the BRDF sample
into sub-samples along the angle θd with uniform intervals.
The number of divisions depends on the material used. For
this special case, we used 6 divisions and each sub-sample
corresponds to a sub-interval of θd with length 90◦/6 = 15◦.
Finally we fitted copula distribution for each sub-sample.

In order to give insight into how well the proposed model
represents BRDF, a 3D Frank copula model was fitted to
measured data of blue-metallic-paint. Figure 2 shows result-
ing plots of measured BRDFs against the estimated BRDFs
for red channel. It is seen from the figure that there is a good
agreement between the estimated and measured BRDF val-
ues for this color channel. The existence of some outliers
can be seen clearly. Ngan et al. [NDM05] also noted this
situation and they ignored the data with incident or outgoing
angle larger than 80 degrees in their analysis.

Identifying the best candidate family of copula distribu-
tions is an important issue in this application. However, we
eliminated some of the families at the beginning because of
some theoretical limitations. For example, for some of the
distributions, a global minimum could not be reached in
the acceptable range of the corresponding parameter during
the optimization process.

The remaining Archimedean models, including the Clay-
ton, Frank, Gumbel-Hougaard families of copulas [Nel06]
and BB1, BB2, BB3, BB6 and BB7 class of distributions
[Joe97], were considered. The IFS method as explained in
Section 5 was used for estimating the dependence parameter.
A constrained non-linear optimization technique is applied
to minimize the objective function in Equation (17) using

FMINCON [WMNO06] in MATLAB library. FMINCON is
a constrained nonlinear optimization algorithm that attempts
to find a minimum of a function of several variables starting at
an initial estimate. This algorithm does not guarantee a con-
vergence toward a global minimum. However, our objective
function in Equation (17) has one variable only, and optimum
solutions have been obtained without facing any difficulty.
To identify the best fitting model, agreements between the
fitted model and the measured BRDFs were examined. It was
interesting to note that the Frank distribution was identified
as the best model for all materials considered and for all color
channels.

Another graphical comparison based on the polar plots of
various models, including the Ward, the Cook-Torrance, the
Lawrence et al. and Frank copula models, were made. Fitted
and measured BRDFs are plotted in the incidence plane for
θ = 0, 45, 75 degrees. Figure 3 illustrates the underlying po-
lar plots based on yellow-matte-plastic. The relative quality
of the fitted models can be compared for this material. It is
noted that the Frank copula model performed well for these
cases.

Renderings of spheres based on the BRDF measurements
were generated using the Frank copula are presented in
Figure 4. Direct illumination was used for rendering. Spheres
in the top row and in the middle row are based on the mea-
sured BRDF data and the Frank copula models, respectively.
The differences between the first row images and the second
row images are shown in the bottom row. All difference im-
ages are standardized using the same scaling factor to provide
a better visual comparison. It is seen from this figure that the
Frank copula model provided extremely good matching with
the real images in all cases except chrome-steel. Chrome-
steel is known to be a highly specular material and many
BRDF models have failed to provide satisfactory representa-
tions [NDM05].

To assess the fitting quality of the model quantitatively
we calculated the Peak Signal-to-Noise Ratio (PSNR) values
for each color channel and obtained their averages [LC07].
For comparision, we have fitted several BRDF models using
Ngan et al.’s [NDM05] fitting procedures. The PSNR values
for different models and materials are presented in Table 1
and Figure 5. The results in the table and figure indicate
that for these materials, the Frank copula model has yielded
the highest PSNR values in most cases. The Frank copula
model did not perform well only for highly specular material,
namely red-specular-plastic and for diffuse materials, namely
beige-fabric and white-diffuse-bball. The significant PSNR
differences between the proposed Frank copula model and
the others explain the higher quality of the underlying model.

To make a further comparison, we obtained renderings
of a scene based on three different BRDF models, namely
the Ward model [War92], the Lawrence et al. representation
[LRR04] and our model (with Frank distribution). Measured
BRDF data from Matusik et al. [MPBM03] was used and the
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(d) Frank copula(c) Lawrence et al.(b) Cook-Torrance(a) Ward

Figure 3: Polar plots of various fitted models against the measured BRDF (black dashed lines) of yellow-matte-plastic in the
incidence plane. Columns from left to right: (a) the Ward, (b) the Cook-Torrance, (c) the Lawrence et al. and (d) the Frank
copula models. Rows from top to bottom: θ = 0, 45, 75 degrees. Cubic root applied for visualization purpose.

Figure 4: Various spheres rendered with our Frank copula model using different materials. Columns left to right: dark-blue-
paint, blue-metallic-paint, fruitwood-241, nickel, yellow-matte-plastic and chrome-steel. Rows top to bottom: Reference images
rendered using measured data; images rendered using Frank copula model based on (θh, θd , φd ) and difference images.

resulting images, shown in Figure 6, obtained in a similar
way as given by Edwards et al. [EBJ∗06] who refer to a
similar figure from Lawrence et al. [LRR04]. The globally
illuminated scene rendered at 4096 samples per pixel. Insets
in the figure represent the difference images between the real
image (top left image in Figure 6) and the corresponding

rendered image. By visual comparisons of the images based
on considering both the insets and the images themselves in
this figure, it is seen that the Frank copula model has provided
the best representation. The corresponding PSNR values for
the Ward model, for the Lawrence et al. representation and
for our model were found to be 25.77, 31.55 and 38.53,
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Table 1: PSNR values for the three BRDF models based on
Figure 4.

Blue-metallic- Yellow-matte-
BRDF Model paint Nickel plastic

Frank copula 46.39 43.16 42.12
Lawrence et al. 37.85 32.94 29.71
Ward 32.85 28.52 33.54
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Figure 5: The PSNR values of the Ashikhmin-Shirley, the
Cook-Torrance, the Ward and our Frank copula models. The
BRDFs are sorted in the PSNRs of the Ashikhmin-Shirley
model (Blue) for visualization purpose.

respectively. These results also give some idea about the
representational ability of our Frank copula model.

The Archimedean copula distributions considered in this
paper are characterized through a single nonlinear parameter
and the marginal distributions. If the marginal distributions
were known, we would need to store a single parameter
value only. Another possibility is to identify the correspond-
ing marginal distributions and estimate their parameters from
the sample data. In this paper we stored the original data for
each empirical marginal distribution. This is, of course, the
worst case of our approach in terms of storage needs. We
compare the storage need of the Frank copula model with one
of its competitors, namely the Lawrence et al. representation.
The results obtained for each of the three different materials
are presented in Table 2. The complete Frank copula repre-
sentation requires less data storage than its competitors in all
cases.

A similar comparison was performed on rendering times
of the models based on Figure 4, which has 1024 samples per
pixel. The results are presented in Table 3. Rendering times
were acquired on a Pentium Core2Duo 2.33 GHz computer
with 3 GB memory. As seen from Table 3, the rendering

Figure 6: Top left: Reference image using measured BRDF
data, Top right: The Lawrence et al.’s representation, Bottom
left: The Ward model based on two specular lobes, Bottom
right: The Frank copula model.

Table 2: Required storage spaces by the three BRDF representa-
tions for various materials. Rendering data are prepared in binary
double precision for all BRDF representations.

Blue-metallic- Yellow-matte-
BRDF Model paint Nickel plastic

Measured 33.4MB 33.4MB 33.4MB
Lawrence et al. 139.0KB 96.5KB 331.9KB
Frank copula 40.4KB 40.4KB 40.4KB

Table 3: Rendering times (in seconds) of BRDF models.

Blue-metallic- Yellow-matte-
BRDF Model paint Nickel plastic

Measured 2979.6 2689.3 2958.1
Frank copula 3167.0 3154.9 3172.1
Lawrence et al. 2960.0 2840.4 2751.6
Ward 2041.3 2198.2 2219.8

times of the Frank copula model is higher than rendering
times of the other models.

Finally we demonstrate the reciprocity property of the
proposed model in Figure 7. Images presented in Figure 7
were obtained by interchanging the incident and outgoing
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Figure 7: Left: scene rendered using Frank copula model. Middle: scene rendered using the same Frank copula model with
incoming and outgoing vectors exchanged. Right: A difference between left and middle images.

directions and the renderings of the objects for each case are
shown in the figure.

9. Conclusions and Future Work

In this paper, we have introduced a novel approach for mod-
eling surface reflection. The proposed model can also be re-
ferred to as a compression technique for the sampled BRDF
data. This model essentially is based on treating BRDF as
a multivariate probability distribution and measured BRDF
data as a sample from this distribution. The Frank distri-
bution from the Archimedean family of copula distributions
has been employed for this purpose. Using a well-known data
set, empirically we have shown that Frank copula provided
extremely well approximations in most cases.

Empirical marginal distributions were stored and used for
nonparametric estimation of the underlying distributions (in
this sense the proposed technique for BRDF representation
can also be considered to be a compression procedure of
BRDF data).

We have outlined an importance sampling technique that
can be used for the evaluation of the lighting model. However,
implementation of the proposed technique is not easy and
a number of numerical problems need to be solved. Our
research is being continued along this line.
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Appendix

Algorithm 1 prepares data for model fitting. It receives sam-
pled measured BRDF data as a parameter and returns nor-
malized measured BRDF data, F1, F2, F3 and normalization
factors. F1, F2, F3 and normalization factors are also used
in rendering.

Algorithm 2 is the fitting objective function. This algo-
rithm also applies to the Algorithm 3, which is the 3D Frank

copula pdf. Algorithm 4 is based on our rendering algorithm
for 3D Frank copula model based on (θh, θd , φd ). Algorithm
4 uses F1, F2, F3, normalization factors and estimated αs.

These algorithms consider only one color channel. They
should be used for each channel separately.

Algorithm 1: prepareFittingData(measBRDF)

1: let partθd be the number of partitions
2: for i = 0 to partθd

3: let normBRDF[i] be the normalized measured
brdf data such that

4: calculate nCoeff[i] = sum(measBRDF[i]) and
normBRDF[i] = measBRDF[i] / nCoeff[i]

5: calculate f1[i](θh) from normBRDF[i]
6: calculate f2[i](θd ) from normBRDF[i]
7: calculate f3[i](φd ) from normBRDF[i]
8: /*f1(θh), f2(θd ), f3(φd ) are 1D pdfs*/
9: calculate F1[i](θh) = cumsum(f1[i](θh))

10: calculate F2[i](θd ) = cumsum(f2[i](θd ))
11: calculate F3[i](φd ) = cumsum(f3[i](φd ))
12: /*F1(θh), F2(θd ), F3(φd ) are 1D cdfs*/
13: end for
14: return normBRDF, F1, F2, F3 and nCoeff

Algorithm 2: fittingObjective(α, F1, F2, F3, normBRDF,
partNumber)

1: set i = partNumber
2: set error = 0
3: for j = 0 to sampleSizeN
4: find u1 = F1[i](θh[j ])
5: find u2 = F2[i](θd [j ])
6: find u3 = F3[i](φd [j ])
7: find c = frank3DPdf(u1, u2, u3, α)
8: find f1 = F ′

1[i](θh[j ])
9: find f2 = F ′

2[i](θd [j ])
10: find f3 = F ′

3[i](φd [j ])
11: calculate estBRDF = c × f1 × f2 × f3

12: calculate error = error + pow((estBRDF−
normBRDF[i][j]), 2)

13: end for
14: return error
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Algorithm 3: frank3DPdf(u1, u2, u3, α)

1: calculate g2
1 = pow((exp(α)−1),2)

2: calculate gu = exp(α × u1)−1
3: calculate gv = exp(α × u2)−1
4: calculate gy = exp(α × u3)−1
5: calculate gu+v+y = exp(α×(u1 + u2 + u3))−1
6: calculate pdf = pow(α, 2)×(1 + gu+v+y )×g2

1×
g2

1 − gu × gv × gy )/(pow((g2
1 + gu × gv × gy ), 3))

7: return pdf

Algorithm 4: renderBrdfCopula(ωi , ωo)

1: get (θi , φi ) angles from ωi

2: get (θo, φo) angles from ωo

3: apply Rusinkiewicz coordinate transformation and get
(θh, φd , θd , φd ) angles from (θi , φi , θo, φo) angles

4: /*enforce reciprocity: φd ← φd + π*/
5: if(φd < 0) then
6: φd = φd + π

7: end if
8: let partθd be the number of partitions
9: find proper partition index i = (θd/(π/2/partθd ))

10: recalculate θd = θd − i × (π/2/partθd )
11: find u1 = F1[i](θh)
12: find u2 = F2[i](θd )
13: find u3 = F3[i](φd )
14: /*F1(θh), F2(θd ), F3(φd ) are 1D cdfs*/
15: find c = frank3DPdf(u1, u2, u3, α[i])
16: find f1 = F ′

1[i](θh)
17: find f2 = F ′

2[i](θd )
18: find f3 = F ′

3[i](φd )
19: /*F ′

1(θh), F ′
2(θd ), F ′

3(φd ) are 1D pdfs*/
20: let nCoeff[i] be sum of the measured brdfs
21: calculate brdf = c × f1 × f2 × f3×nCoeff[i]
22: return brdf
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